Multi-omics analysis of the correlation between surface microbiome and metabolome in Saccharina latissima (Laminariales, Phaeophyceae)

被引:0
|
作者
Adouane, Emilie [1 ,2 ]
Hubas, Cedric [3 ]
Leblanc, Catherine [4 ]
Lami, Raphael [2 ]
Prado, Soizic [1 ]
机构
[1] Sorbonne Univ, Unite Mol Commun & Adaptat Microorganismes, Museum Natl Hist Naturelle, UMR 7245,CNRS, F-75005 Pari, s, France
[2] Sorbonne Univ, CNRS, Lab Biodivers & Biotechnol Microbienne LBBM, UAR 3579,Observ Oceanol, F-66650 Banyuls Sur Mer, France
[3] Univ Antilles, Sorbonne Univ, Univ Caen Normandie, Stn Marine Concarneau,Museum Natl Hist Nat,Lab Bio, F-29900 Concarneau, France
[4] Sorbonne Univ, Stn Biol Roscoff SBR, CNRS, Biol Integrat Modeles Marins,LBI2M, F-29680 Roscoff, France
关键词
brown macroalgae; epiphytic community; holobiont; metabarcoding; metabolomics; ALGA DELISEA-PULCHRA; MARINE MACROALGAE; BACTERIAL COMMUNITY; MYCOSPHAERELLA-ASCOPHYLLI; EPIBACTERIAL COMMUNITIES; HALOGENATED FURANONES; CULTIVATED KELP; KOJIC ACID; FUNGI; DIVERSITY;
D O I
10.1093/femsec/fiae160
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The microbiome of Saccharina latissima, an important brown macroalgal species in Europe, significantly influences its health, fitness, and pathogen resistance. Yet, comprehensive studies on the diversity and function of microbial communities (bacteria, eukaryotes, and fungi) associated with this species are lacking. Using metabarcoding, we investigated the epimicrobiota of S. latissima and correlated microbial diversity with metabolomic patterns (liquid chromatography coupled to tandem mass spectrometry). Specific epibacterial and eukaryotic communities inhabit the S. latissima surface, alongside a core microbiota, while fungal communities show lower and more heterogeneous diversity. Metabolomic analysis revealed a large diversity of mass features, including putatively annotated fatty acids, amino derivatives, amino acids, and naphthofurans. Multiple-factor analysis linked microbial diversity with surface metabolome variations, driven mainly by fungi and bacteria. Two taxa groups were identified: one associated with bacterial consortia and the other with fungal consortia, each correlated with specific metabolites. This study demonstrated a core bacterial and eukaryotic microbiota associated with a core metabolome and highlighted interindividual variations. Annotating the surface metabolome using Natural Products databases suggested numerous metabolites potentially involved in interspecies chemical interactions. Our findings establish a link between microbial community structure and function, identifying two microbial consortia potentially involved in the chemical defense of S. latissima. The surface of brown algae is a hub for inter-species chemical interactions.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multi-omics analysis elucidates the relationship between intratumor microbiome and host immune heterogeneity in breast cancer
    Li, Jia
    Zhang, Yu
    Cai, Yifan
    Yao, Peizhuo
    Jia, Yiwei
    Wei, Xinyu
    Du, Chong
    Zhang, Shuqun
    MICROBIOLOGY SPECTRUM, 2024, 12 (04)
  • [22] Specific gut microbiome and metabolome features in renal allograft rejection via multi-omics integration analyses.
    Zhan, Panpan
    Dai, Xing
    TRANSPLANTATION, 2024, 108 (9S)
  • [23] Multi-Omics Analysis Reveals Aberrant Gut-Metabolome-Immune Network in Schizophrenia
    Fan, Yajuan
    Gao, Yuan
    Ma, Qingyan
    Yang, Zai
    Zhao, Binbin
    He, Xiaoyan
    Yang, Jian
    Yan, Bin
    Gao, Fengjie
    Qian, Li
    Wang, Wei
    Zhu, Feng
    Ma, Xiancang
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [24] Integrated plasma multi-omics analysis classifies keymycobiome, microbiome and metabolome changes linked to development of poor outcome in severe alcoholic hepatitis
    Tripathi, Gaurav
    Bindal, Vasundhra
    Pandey, Sushmita
    Sharma, Neha
    Yadav, Manisha
    Sharma, Nupur
    Mathew, Babu
    Saif, Rimsha
    Bhat, Sadam H.
    Maiwall, Rakhi
    Sarin, Shiv Kumar
    Maras, Jaswinder
    JOURNAL OF HEPATOLOGY, 2024, 80 : S125 - S126
  • [25] Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications
    Duan, Dongdong
    Wang, Mingyu
    Han, Jinyi
    Li, Mengyu
    Wang, Zhenyu
    Zhou, Shenping
    Xin, Wenshui
    Li, Xinjian
    FRONTIERS IN MICROBIOLOGY, 2025, 15
  • [26] Gut microbiome, cognitive function and brain structure: a multi-omics integration analysis
    Liang, Xinxiu
    Fu, Yuanqing
    Cao, Wen-ting
    Wang, Zhihong
    Zhang, Ke
    Jiang, Zengliang
    Jia, Xiaofang
    Liu, Chun-ying
    Lin, Hong-rou
    Zhong, Haili
    Miao, Zelei
    Gou, Wanglong
    Shuai, Menglei
    Huang, Yujing
    Chen, Shengdi
    Zhang, Bing
    Chen, Yu-ming
    Zheng, Ju-Sheng
    TRANSLATIONAL NEURODEGENERATION, 2022, 11 (01)
  • [27] Gut microbiome, cognitive function and brain structure: a multi-omics integration analysis
    Xinxiu Liang
    Yuanqing Fu
    Wen-ting Cao
    Zhihong Wang
    Ke Zhang
    Zengliang Jiang
    Xiaofang Jia
    Chun-ying Liu
    Hong-rou Lin
    Haili Zhong
    Zelei Miao
    Wanglong Gou
    Menglei Shuai
    Yujing Huang
    Shengdi Chen
    Bing Zhang
    Yu-ming Chen
    Ju-Sheng Zheng
    Translational Neurodegeneration, 11
  • [28] Multi-omics reveals the mechanism of rumen microbiome and its metabolome together with host metabolome participating in the regulation of milk production traits in dairy buffaloes
    Jiang, Bingxing
    Qin, Chaobin
    Xu, Yixue
    Song, Xinhui
    Fu, Yiheng
    Li, Ruijia
    Liu, Qingyou
    Shi, Deshun
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [29] Canonical correlation analysis for multi-omics: Application to cross-cohort analysis
    Jiang, Min-Zhi
    Aguet, Francois
    Ardlie, Kristin
    Chen, Jiawen
    Cornell, Elaine
    Cruz, Dan
    Durda, Peter B.
    Gabriel, Stacey E.
    Gerszten, Robert
    Guo, Xiuqing W.
    Johnson, Craig
    Kasela, Silva A.
    Lange, Leslie
    Lappalainen, Tuuli
    Liu, Yongmei P.
    Reiner, Alex
    Smith, Josh
    Sofer, Tamar D.
    Taylor, Kent P.
    Tracy, Russell J.
    VanDenBerg, David G.
    Wilson, James S.
    Rich, Stephen I.
    Rotter, Jerome I.
    Love, Michael M.
    Raffield, Laura
    Li, Yun
    PLOS GENETICS, 2023, 19 (05): : e1010517
  • [30] Multiset correlation and factor analysis enables exploration of multi-omics data
    Brown, Brielin C.
    Wang, Collin
    Kasela, Silva
    Aguet, Francois
    Nachun, Daniel C.
    Taylor, Kent D.
    Tracy, Russell P.
    Durda, Peter
    Liu, Yongmei
    Johnson, W. Craig
    Van Den Berg, David
    Gupta, Namrata
    Gabriel, Stacy
    Smith, Joshua D.
    Gerzsten, Robert
    Clish, Clary
    Wong, Quenna
    Papanicolau, George
    Blackwell, Thomas W.
    Rotter, Jerome I.
    Rich, Stephen S.
    Barr, R. Graham
    Ardlie, Kristin G.
    Knowles, David A.
    Lappalainen, Tuuli
    CELL GENOMICS, 2023, 3 (08):