On von Neumann algebras consisting of complex symmetric operators

被引:0
|
作者
Xiang, Zhang [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年
关键词
von Neumann algebra; complex symmetric operator; projection; C-ASTERISK-ALGEBRA; NORM; CLOSURE;
D O I
10.1080/03081087.2024.2430961
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An operator $ T \in B(\mathcal {H}) $ T is an element of B(H) is said to be complex symmetric if there exists a conjugate-linear, isometric involution $ C: \mathcal {H} \rightarrow \mathcal {H} $ C:H -> H so that $ T=C T<^>* C $ T=CT & lowast;C. We prove that a von Neumann algebra acting on a separable Hilbert space consists of complex symmetric operators if and only if it is unitarily equivalent to a direct sum of (some of the summands may be absent): (i) an abelian von Noumann algebra. (ii) a type $ \mathrm {I}_2 $ I2 von Neumann algebra.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Torsion theories for algebras of affiliated operators of finite von Neumann algebras
    Vas, Lia
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (06) : 2053 - 2075
  • [22] Conditions of coincidence of central extensions of von Neumann algebras and algebras of measurable operators
    S. Albeverio
    K. K. Kudaybergenov
    R. T. Djumamuratov
    Lobachevskii Journal of Mathematics, 2012, 33 (3) : 200 - 207
  • [23] Conditions of Coincidence of Central Extensions of von Neumann Algebras and Algebras of Measurable Operators
    Albeverio, S.
    Kudaybergenov, K. K.
    Djumamuratov, R. T.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (03) : 200 - 207
  • [24] On normal τ-measurable operators affiliated with semifinite von Neumann algebras
    A. M. Bikchentaev
    Mathematical Notes, 2014, 96 : 332 - 341
  • [25] On normal τ-measurable operators affiliated with semifinite von Neumann algebras
    Bikchentaev, A. M.
    MATHEMATICAL NOTES, 2014, 96 (3-4) : 332 - 341
  • [26] On power-bounded operators in finite von Neumann algebras
    Cassier, G
    Fack, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) : 133 - 158
  • [27] On the von Neumann algebras associated to Yang-Baxter operators
    Bikram, Panchugopal
    Kumar, Rahul
    Mohanta, Rajeeb
    Mukherjee, Kunal
    Saha, Diptesh
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (04) : 1331 - 1354
  • [28] The Weyl–von Neumann theorem for skew-symmetric operators
    Qinggang Bu
    Sen Zhu
    Annals of Functional Analysis, 2023, 14
  • [29] Innerness of continuous derivations on algebras of measurable operators affiliated with finite von Neumann algebras
    Ayupov, Shavkat
    Kudaybergenov, Karimbergen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 256 - 267
  • [30] Structure of derivations on various algebras of measurable operators for type I von Neumann algebras
    Albeverio, S.
    Ayupov, Sh. A.
    Kudaybergenov, K. K.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (09) : 2917 - 2943