On von Neumann algebras consisting of complex symmetric operators
被引:0
|
作者:
Xiang, Zhang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
Xiang, Zhang
[1
]
机构:
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
来源:
LINEAR & MULTILINEAR ALGEBRA
|
2024年
关键词:
von Neumann algebra;
complex symmetric operator;
projection;
C-ASTERISK-ALGEBRA;
NORM;
CLOSURE;
D O I:
10.1080/03081087.2024.2430961
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
An operator $ T \in B(\mathcal {H}) $ T is an element of B(H) is said to be complex symmetric if there exists a conjugate-linear, isometric involution $ C: \mathcal {H} \rightarrow \mathcal {H} $ C:H -> H so that $ T=C T<^>* C $ T=CT & lowast;C. We prove that a von Neumann algebra acting on a separable Hilbert space consists of complex symmetric operators if and only if it is unitarily equivalent to a direct sum of (some of the summands may be absent): (i) an abelian von Noumann algebra. (ii) a type $ \mathrm {I}_2 $ I2 von Neumann algebra.