On von Neumann algebras consisting of complex symmetric operators

被引:0
|
作者
Xiang, Zhang [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
关键词
von Neumann algebra; complex symmetric operator; projection; C-ASTERISK-ALGEBRA; NORM; CLOSURE;
D O I
10.1080/03081087.2024.2430961
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An operator $ T \in B(\mathcal {H}) $ T is an element of B(H) is said to be complex symmetric if there exists a conjugate-linear, isometric involution $ C: \mathcal {H} \rightarrow \mathcal {H} $ C:H -> H so that $ T=C T<^>* C $ T=CT & lowast;C. We prove that a von Neumann algebra acting on a separable Hilbert space consists of complex symmetric operators if and only if it is unitarily equivalent to a direct sum of (some of the summands may be absent): (i) an abelian von Noumann algebra. (ii) a type $ \mathrm {I}_2 $ I2 von Neumann algebra.
引用
收藏
页数:8
相关论文
共 50 条