In a temporal network with discrete time-labels on its edges, information can only "flow" along sequences of edges with non-decreasing (resp. increasing) time-labels. In this paper we make a first attempt to understand how the direction of information flow on one edge can impact the direction of information flow on other edges. By naturally extending the classical notion of a transitive orientation in static graphs, we introduce the fundamental notion of a temporal transitive orientation, and we systematically investigate its algorithmic behavior. Our main result is a conceptually simple, yet technically quite involved, polynomial-time algorithm for recognizing whether a temporal graph G is transitively orientable. In wide contrast we prove that, surprisingly, it is NP-hard to recognize whether G is strictly transitively orientable. Additionally we introduce further related problems to temporal transitivity, notably among them the temporal transitive completion problem, for which we prove both algorithmic and hardness results. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).