Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing

被引:1
|
作者
Cappello, Franck [1 ]
Acosta, Mario [10 ]
Agullo, Emmanuel [9 ]
Anzt, Hartwig [12 ]
Calhoun, Jon [7 ]
Di, Sheng [2 ]
Giraud, Luc [9 ]
Gruetzmacher, Thomas [12 ]
Jin, Sian [4 ]
Sano, Kentaro [8 ]
Sato, Kento [8 ]
Singh, Amarjit [8 ]
Tao, Dingwen [5 ]
Tian, Jiannan [6 ]
Ueno, Tomohiro [8 ]
Underwood, Robert [3 ]
Vivien, Frederic [9 ]
Yepes, Xavier [11 ]
Kazutomo, Yoshii [1 ]
Zhang, Boyuan [6 ]
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Argonne Natl Lab, Math & Comp Sci MCS Div, Lemont, IL USA
[3] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL USA
[4] Indiana Univ, Bloomington, IN USA
[5] Indiana Univ, HighPerformance Data Analyt & Comp Lab, Bloomington, IN USA
[6] Indiana Univ, Intelligent Syst Engn, Bloomington, IN USA
[7] Clemson Univ, Holcombe Dept Elect & Comp Engn, Clemson, SC USA
[8] RIKEN, Ctr Computat Sci, Kobe, Japan
[9] Natl Res Inst Comp & Automat, Lyon, France
[10] Barcelona Supercomp Ctr, Earth Sci Dept, Computat Grp, Barcelona, Spain
[11] Barcelona Supercomp Ctr, Barcelona, Spain
[12] Karlsruhe Inst Technol, Karlsruhe, Germany
基金
美国国家科学基金会;
关键词
Lossy compression; Scientific data; Compression for AI; GPU acceleration; I/O scheduling; EARTH SYSTEM MODEL; GMRES; SIMULATION; I/O;
D O I
10.1016/j.future.2024.05.022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Joint Laboratory on Extreme-Scale Computing (JLESC) was initiated at the same time lossy compression for scientific data became an important topic for the scientific communities. The teams involved in the JLESC played and are still playing an important role in developing the research, techniques, methods, and technologies making lossy compression for scientific data a key tool for scientists and engineers. In this paper, we present the evolution of lossy compression for scientific data from 2015, describing the situation before the JLESC started, the evolution of this discipline in the past 8 years (until 2023) through the prism of the JLESC collaborations on this topic and some of the remaining open research questions.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Performance Optimization for Relative-Error-Bounded Lossy Compression on Scientific Data
    Zou, Xiangyu
    Lu, Tao
    Xia, Wen
    Wang, Xuan
    Zhang, Weizhe
    Zhang, Haijun
    Di, Sheng
    Tao, Dingwen
    Cappello, Franck
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (07) : 1665 - 1680
  • [22] Optimizing Scientific Data Transfer on Globus with Error-bounded Lossy Compression
    Liu, Yuanjian
    Di, Sheng
    Chard, Kyle
    Foster, Ian
    Cappello, Franck
    2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 703 - 713
  • [23] High-Ratio Lossy Compression: Exploring the Autoencoder to Compress Scientific Data
    Liu, Tong
    Wang, Jinzhen
    Liu, Qing
    Alibhai, Shakeel
    Lu, Tao
    He, Xubin
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 22 - 36
  • [24] Black-box statistical prediction of lossy compression ratios for scientific data
    Underwood, Robert
    Bessac, Julie
    Krasowska, David
    Calhoun, Jon C.
    Di, Sheng
    Cappello, Franck
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2023, 37 (3-4): : 412 - 433
  • [25] Efficient Lossy Compression for Scientific Data Based on Pointwise Relative Error Bound
    Di, Sheng
    Tao, Dingwen
    Liang, Xin
    Cappello, Franck
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2019, 30 (02) : 331 - 345
  • [26] Optimizing Error-Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation
    Zhao, Kai
    Di, Sheng
    Dmitriev, Maxim
    Tonellot, Thierry-Laurent D.
    Chen, Zizhong
    Cappello, Franck
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 1643 - 1654
  • [27] A Data-driven Approach to Harvesting Latent Reduced Models to Precondition Lossy Compression for Scientific Data
    Luo, Huizhang
    Wang, Junqi
    Qin, Zhenlu
    Huang, Dan
    Liu, Qing
    Zhou, Mengchu
    Jiang, Hong
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (03) : 949 - 963
  • [28] Amdahl's Laws and Extreme Data-Intensive Scientific Computing
    Szalay, Alexander S.
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XX, 2011, 442 : 405 - 414
  • [29] LZW Data Compression on Large Scale and Extreme Distributed Systems
    De Agostino, Sergio
    PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2012, 2012, : 18 - 27
  • [30] SIRIUS: Enabling Progressive Data Exploration for Extreme-Scale Scientific Data
    Qiao, Zhenbo
    Lu, Tao
    Luo, Huizhang
    Liu, Qing
    Klasky, Scott
    Podhorszki, Norbert
    Wang, Jinzhen
    IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, 2018, 4 (04): : 900 - 913