Thermal Conductivity of 3D-Printed Metal Using Extrusion-Based Metal Additive Manufacturing Process

被引:0
|
作者
Khanafer, Khalil [1 ]
Abbasspour, Austin [1 ]
Aboelkassem, Yasser [1 ]
机构
[1] Univ Michigan, Coll Innovat & Technol, Div Engn Technol, Flint, MI 48502 USA
关键词
additive manufacturing; thermal conductivity; 3D-printing; extrusion-based metal; finite element analysis; materials processing; metals; COMPOSITES; GRAPHITE;
D O I
10.1115/1.4066639
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, the thermal conductivity of 3D-printed 316L stainless steel parts using the bound metal deposition (BMD) method, an extrusion-based 3D-printing technology, was examined experimentally and validated numerically using finite element analysis (FEA). Various critical printing parameters were examined, including infill density, skin overlap percentage, and print sequence to study their effect on the printed thermal conductivity. A heat conduction experiment was performed on the 3D-printed samples of 316L stainless steel followed by a FEA. The results from this investigation revealed that an increase in 3D-printing infill density correlated with a rise in effective thermal conductivity. Conversely, a substantial decrease in thermal conductivity was observed as porosity increased. For instance, at a porosity level of 16.5%, the thermal conductivity experienced a notable 33% reduction compared to the base material. The skin overlap percentage, which governs how much the outer shell of adjacent layers overlaps, was found to impact heat transfer across the overall part surface. A higher overlap percentage was associated with improved thermal conductivity, although it could affect the surface finish of the part. Furthermore, the study explored the print sequence, focusing on whether the outer wall or infill was printed first. Printing the outer wall first resulted in higher thermal conductivity values than that obtained from printing the infill first. Therefore, it is crucial to carefully consider these factors during the BMD 3D-printing process to achieve the desired thermal conductivity properties.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Development of paste extrusion-based metal additive manufacturing process
    Dayam, Sunidhi
    Tandon, Puneet
    Priyadarshi, Satwik
    RAPID PROTOTYPING JOURNAL, 2022, 28 (10) : 1920 - 1932
  • [2] Electrical conductivity analysis of extrusion-based 3D-printed graphene
    Hushein, R.
    Shajahan, Mohamed Iqbal
    Cep, Robert
    Salunkhe, Sachin
    Murali, Arun Prasad
    Sharad, Gawade
    Hussein, Hussein Mohamed Abdelmoneam
    Nasr, Emad Abouel
    FRONTIERS IN MATERIALS, 2024, 11
  • [3] Additive Manufacturing of Metal Components by Thermal Spray Deposition on 3D-Printed Polymer Parts
    Ramaraju, Ramgopal Varma
    Chandra, Sanjeev
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2022, 31 (08) : 2409 - 2421
  • [4] Additive Manufacturing of Metal Components by Thermal Spray Deposition on 3D-Printed Polymer Parts
    Ramgopal Varma Ramaraju
    Sanjeev Chandra
    Journal of Thermal Spray Technology, 2022, 31 : 2409 - 2421
  • [5] Feasibility Study of an Extrusion-based Direct Metal Additive Manufacturing Technique
    Annoni, Massimiliano
    Giberti, Hermes
    Strano, Matteo
    44TH NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 44, 2016, 5 : 916 - 927
  • [6] Lazy thermal annealing of material extrusion-based 3D-printed PLA specimens
    Birosz, Marton Tamas
    Gal, Andras
    Hegedus-Kuti, Janos
    Ando, Matyas
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (02) : 1691 - 1697
  • [7] Multi-Metal Additive Manufacturing by Extrusion-Based 3D Printing for Structural Applications: A Review
    Mazeeva, Alina
    Masaylo, Dmitriy
    Konov, Gleb
    Popovich, Anatoliy
    METALS, 2024, 14 (11)
  • [8] Extrusion-Based 3D-Printed Supercapacitors: Recent Progress and Challenges
    Xiao Yan
    Yueyu Tong
    Xinzhong Wang
    Feng Hou
    Ji Liang
    Energy & Environmental Materials, 2022, 5 (03) : 800 - 822
  • [9] A review on extrusion-based 3D-printed nanogenerators for energy harvesting
    Wajahat, Muhammad
    Kouzani, Abbas Z.
    Khoo, Sui Yang
    Mahmud, M. A. Parvez
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (01) : 140 - 169
  • [10] Extrusion-Based 3D-Printed Supercapacitors: Recent Progress and Challenges
    Yan, Xiao
    Tong, Yueyu
    Wang, Xinzhong
    Hou, Feng
    Liang, Ji
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (03) : 800 - 822