Dyson-Schwinger equations in minimal subtraction

被引:3
|
作者
Balduf, Paul-Hermann [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
来源
关键词
Dyson-Schwinger equation; renormalization scheme; minimal subtraction; non-perturbative correction; anomalous dimension; DIMENSIONAL RENORMALIZATION; FIELD THEORY; REGULARIZATION;
D O I
10.4171/AIHPD/169
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compare the solutions of one-scale Dyson-Schwinger equations (DSEs) in the minimal subtraction (MS) scheme to the solutions in kinematic momentum subtraction (MOM) renormalization schemes. We establish that the MS-solution can be interpreted as a MOMsolution, but with a shifted renormalization point, where the shift itself is a function of the coupling. We derive relations between this shift and various renormalization group functions and counterterms in perturbation theory. As concrete examples, we examine three different one-scale Dyson-Schwinger equations: one based on the 1-loop multiedge graph in D = 4 dimensions, one for D = 6 dimensions, and one for mathematical toy model. For each of the integral kernels, we examine both the linear and nine different non-linear Dyson-Schwinger equations. For the linear cases, we empirically find exact functional forms of the shift between MOM and MS renormalization points. For the non-linear DSEs, the results for the shift suggest a factorially divergent power series. We determine the leading asymptotic growth parameters and find them in agreement with the ones of the anomalous dimension. Finally, we present a tentative exact solution to one of the non-linear DSEs of the toy model.
引用
收藏
页码:1 / 50
页数:50
相关论文
共 50 条
  • [31] Dyson-Schwinger Equations of Chiral Chemical Potential
    田亚兰
    崔著钫
    王彬
    石远美
    杨友昌
    宗红石
    Chinese Physics Letters, 2015, (08) : 44 - 47
  • [32] Polynomial functors and combinatorial Dyson-Schwinger equations
    Kock, Joachim
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (04)
  • [33] Hadron physics and the Dyson-Schwinger equations of QCD
    Maris, Pieter
    QUARK CONFINEMENT AND THE HADRON SPECTRUM VII, 2007, 892 : 65 - 71
  • [34] Dyson-Schwinger Equations of Chiral Chemical Potential
    田亚兰
    崔著钫
    王彬
    石远美
    杨友昌
    宗红石
    Chinese Physics Letters, 2015, 32 (08) : 44 - 47
  • [35] Meson spectroscopy and properties using dyson-schwinger equations
    Krassnigg, A.
    Roberts, C. D.
    Wright, S. V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (2-3): : 424 - 431
  • [36] Log expansions from combinatorial Dyson-Schwinger equations
    Krueger, Olaf
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (08) : 2175 - 2202
  • [37] Generalized chord diagram expansions of Dyson-Schwinger equations
    Hihn, Markus
    Yeats, Karen
    ANNALES DE L INSTITUT HENRI POINCARE D, 2019, 6 (04): : 573 - 605
  • [38] Dyson-Schwinger equations in zero dimensions and polynomial approximations
    Bender, Carl M.
    Karapoulitidis, C.
    Klevansky, S. P.
    PHYSICAL REVIEW D, 2023, 108 (05)
  • [39] Heavy quark confinement from Dyson-Schwinger equations
    Burden, C
    QUARK CONFINEMENT AND THE HADRON SPECTRUM III, 2000, 8 : 257 - 260
  • [40] Studying unquenching effects in QCD with Dyson-Schwinger equations
    Fischer, CS
    Alkofer, R
    Cassing, W
    Llanes-Estrada, F
    Watson, P
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2006, 153 : 90 - 97