Joint Classification of Hyperspectral and LiDAR Data Based on Mamba

被引:3
|
作者
Liao, Diling [1 ]
Wang, Qingsong [1 ]
Lai, Tao [1 ]
Huang, Haifeng [1 ]
机构
[1] Sun Yat sen Univ, Sch Elect & Commun Engn, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Laser radar; Transformers; Data mining; Land surface; Soft sensors; Hyperspectral imaging; Hyperspectral images (HSIs); joint classification; light detection and ranging (LiDAR); Mamba; multimodal; NETWORK;
D O I
10.1109/TGRS.2024.3459709
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the increasing number of remote sensing (RS) data sources, the joint utilization of multimodal data in Earth observation tasks has become a crucial research topic. As a typical representative of RS data, hyperspectral images (HSIs) provide accurate spectral information, while rich elevation information can be obtained from light detection and ranging (LiDAR) data. However, due to the significant differences in multimodal heterogeneous features, how to efficiently fuse HSI and LiDAR data remains one of the challenges faced by existing research. In addition, the edge contour information of images is not fully considered by existing methods, which can easily lead to performance bottlenecks. Thus, a joint classification network of HSI and LiDAR data based on Mamba (HLMamba) is proposed. Specifically, a gradient joint algorithm (GJA) is first performed on LiDAR data to obtain the edge contour data of the land distribution. Subsequently, a multimodal feature extraction module (MFEM) was proposed to capture the semantic features of HSI, LiDAR, and edge contour data. Then, to efficiently fuse multimodal features, a novel deep learning (DL) framework called Mamba, was introduced, and a multimodal Mamba fusion module (MMFM) was constructed. By efficiently modeling the long-distance dependencies of multimodal sequences, the MMFM can better explore the internal features of multimodal data and the interrelationships between modalities, thereby enhancing fusion performance. Finally, to validate the effectiveness of HLMamba, a series of experiments were conducted on three common HSI and LiDAR datasets. The results indicate that HLMamba has superior classification performance compared to other state-of-the-art DL methods. The source code of the proposed method will be available publicly at https://github.com/Dilingliao/HLMamba.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Hyperspectral and LiDAR Data Classification Based on Structural Optimization Transmission
    Zhang, Mengmeng
    Li, Wei
    Zhang, Yuxiang
    Tao, Ran
    Du, Qian
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (05) : 3153 - 3164
  • [22] Classification of hyperspectral and LiDAR data by transformer-based enhancement
    Pan, Jiechen
    Shuai, Xing
    Xu, Qing
    Dai, Mofan
    Zhang, Guoping
    Wang, Guo
    REMOTE SENSING LETTERS, 2024, 15 (10) : 1074 - 1084
  • [23] Classification Based on Hyperspectral Image and LiDAR Data with Contrastive Learning
    Li Shihan
    Hua Haiyang
    Zhang Hao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (22)
  • [24] Autoencoder-Based Fusion Classification of Hyperspectral and LiDAR Data
    Wang Yibo
    Dai Song
    Song Dongmei
    Cao Guofa
    Ren Jie
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [25] Semantic Tokenization-Based Mamba for Hyperspectral Image Classification
    Ming, Ri
    Chen, Na
    Peng, Jiangtao
    Sun, Weiwei
    Ye, Zhijing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 4227 - 4241
  • [26] Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network
    Song, Huacui
    Yang, Yuanwei
    Gao, Xianjun
    Zhang, Maqun
    Li, Shaohua
    Liu, Bo
    Wang, Yanjun
    Kou, Yuan
    REMOTE SENSING, 2023, 15 (11)
  • [27] Multiview Feature Learning and Multilevel Information Fusion for Joint Classification of Hyperspectral and LiDAR Data
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [28] Hyperspectral Image Classification Aided by LiDAR Data
    Deng, Zheng
    Zhao, Genping
    Zhao, Shihui
    Wang, Li
    Wang, Zhuowei
    Wu, Heng
    Cheng, Lianglun
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [29] A novel graph-attention based multimodal fusion network for joint classification of hyperspectral image and LiDAR data
    Cai, Jianghui
    Zhang, Min
    Yang, Haifeng
    He, Yanting
    Yang, Yuqing
    Shi, Chenhui
    Zhao, Xujun
    Xun, Yaling
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [30] Joint Classification of Hyperspectral Images and LiDAR Data Based on Candidate Pseudo Labels Pruning and Dual Mixture of Experts
    Kong, Yi
    Yu, Shaocai
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63