Repetitive acceptance sampling plan based on truncated life test for type-I half-logistic Burr X distributions

被引:0
|
作者
Kiapour, A. [1 ]
Tripathi, Harsh [2 ]
Masoumi, Shiba [3 ]
机构
[1] Islamic Azad Univ, Dept Stat, Babol Branch, Babol, Iran
[2] Symbiosis Int, Symbiosis Stat Inst, Pune, India
[3] Islamic Azad Univ, Dept Ind Engn, Babol Branch, Babol, Iran
关键词
Consumer's and producer's risk; Operating characteristic function; Repetitive acceptance sampling plan; Type-I half-logistic Burr X distribution;
D O I
10.1007/s44199-025-00108-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this manuscript, we developed a repetitive acceptance sampling inspection plan (RASP)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( RASP)$$\end{document} for type-I half-logistic Burr X (TIHLBX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ TIHLBX$$\end{document}) distribution based on time truncated scheme. Discussion over the TIHLBX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ TIHLBX$$\end{document} distribution is provided with their important mathematical properties along with the expression of quantile function and median. Operational procedure of RASP is discussed in detail with the formulation of optimization problem of proposed plan. Two point approach is used to determine the plan parameters of suggested plan for TIHLBX. The suggested test strategies significantly reduce the inspection effort with respect to the best single sampling plans. A new strategy of RASP is conducted based on weighted average of risks. The results show that the proposed optimal plans outperform traditional two-point sampling plan. Hypothetical example is provided to illustrate the presented tables. A real life example is considered to explain the application of proposed RASP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ RASP$$\end{document}.
引用
收藏
页数:15
相关论文
共 50 条