Experimental Investigation of Natural Circulating Solar Energy System Including a Parabolic Trough Solar Collector

被引:0
|
作者
Bayhan, Burhan [1 ]
Arslan, Gokhan [2 ]
机构
[1] Selcuk Univ, Cihanbeyli Vocat Sch, Dept Mech & Met Technol, TR-42850 Konya, Turkiye
[2] Mersin Univ, Fac Engn, Dept Mech Engn, TR-33343 Mersin, Turkiye
关键词
natural circulation; parabolic trough collector; solar energy system; absorber; heat transfer; mass transfer; radiation; EVACUATED TUBE; HEAT-TRANSFER; WATER-HEATER; PERFORMANCE; FLOW;
D O I
10.1115/1.4066301
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The most common natural flow water heating systems are in one-ended inclined pipes today. This study aims to investigate the natural circulation solar energy system experimentally with a parabolic trough solar collector. For this purpose, a natural circulation solar energy system including a parabolic trough solar collector that follows the sun in one dimension on the N-S axis in the outdoor environment has been established. Experiments were conducted on different dates. The radiation values coming into the opening of the moving collector were calculated. With the soltrace program, it has been found that 56% of this radiation can reach the vacuum tube glass pipe in the focus of the collector. In addition, the Rayleigh number was calculated for each experiment for the section of the glass tube close to the tank inlet, and it was monitored whether there was natural circulation throughout the experiment. As a result, the average Rayleigh number in the experiments conducted on February13, March 31, April 24, May 23, June 9, and July 6 was 1.4E + 06, 7.6E + 05, 7.8E + 04, 2.2E + 04, 3.1E + 05, respectively. and calculated as 2.8E + 05. In the experiments on May 23 and April 24, when the cooling system was open, it was observed that the Rayleigh number constantly dropped below the critical value. In other experiments, the situation is the opposite, and the natural flow is continuous.
引用
收藏
页数:10
相关论文
共 50 条
  • [42] Design of Solar Parabolic Trough Collector by FEM
    Tao, Lei
    Ling, Xiang
    Zhu, Yuezhao
    DETC 2008: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATIONAL IN ENGINEERING CONFERENCE, VOL 3, PTS A AND B: 28TH COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2009, : 375 - 380
  • [43] Experimental investigation of parabolic trough solar collector thermal efficiency enhanced with different absorber coatings
    Al-Rabeeah A.Y.
    Seres I.
    Farkas I.
    International Journal of Thermofluids, 2023, 19
  • [44] Optical simulation of a parabolic solar trough collector
    Grena, Roberto
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2010, 29 (01) : 19 - 36
  • [45] Dynamic performance of parabolic trough solar collector
    Jie, Ji
    Han Chongwei
    Wei, He
    Gang, Pei
    PROCEEDINGS OF ISES SOLAR WORLD CONGRESS 2007: SOLAR ENERGY AND HUMAN SETTLEMENT, VOLS I-V, 2007, : 750 - 754
  • [46] Performance simulation of a parabolic trough solar collector
    Huang, Weidong
    Hu, Peng
    Chen, Zeshao
    SOLAR ENERGY, 2012, 86 (02) : 746 - 755
  • [47] A detailed review on solar parabolic trough collector
    Upadhyay, Bhargav H.
    Patel, Amitkumar J.
    Ramana, P. V.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, 43 (01) : 176 - 196
  • [48] Experimental study of a parabolic trough solar collector with rotating absorber tube
    Norouzi, Amir Mohammad
    Siavashi, Majid
    Ahmadi, Rouhollah
    Tahmasbi, Milad
    Renewable Energy, 2021, 168 : 734 - 749
  • [49] Experimental and numerical analysis of thermal losses of a parabolic trough solar collector
    Pigozzo Filho, Victor C.
    de Sa, Alexandre B.
    Passos, Julio C.
    Colle, Sergio
    2013 ISES SOLAR WORLD CONGRESS, 2014, 57 : 381 - 390
  • [50] Exergetic Optimization of a Parabolic Trough Solar Collector
    Gunay, Ceyda
    Erdogan, Anil
    Colpan, C. Ozgur
    ROLE OF EXERGY IN ENERGY AND THE ENVIRONMENT, 2018, : 677 - 689