Differentially Private Clustered Federated Load Prediction Based on the Louvain Algorithm

被引:1
|
作者
Pan, Tingzhe [1 ]
Hou, Jue [2 ]
Jin, Xin [1 ]
Li, Chao [2 ]
Cai, Xinlei [2 ]
Zhou, Xiaodong [1 ]
机构
[1] CSG Sci Res Inst Co Ltd, Guangzhou 510640, Peoples R China
[2] Guangdong Power Grid Co Ltd, Power Dispatching Control Ctr, Guangzhou 510060, Peoples R China
关键词
federated learning; load forecasting; adaptive differential privacy; Louvain algorithm; clustered;
D O I
10.3390/a18010032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Load forecasting plays a fundamental role in the new type of power system. To address the data heterogeneity and security issues encountered in load forecasting for smart grids, this paper proposes a load-forecasting framework suitable for residential energy users, which allows users to train personalized forecasting models without sharing load data. First, the similarity of user load patterns is calculated under privacy protection. Second, a complex network is constructed, and a federated user clustering method is developed based on the Louvain algorithm, which divides users into multiple clusters based on load pattern similarity. Finally, a personalized and adaptive differentially private federated learning Long Short-Term Memory (LSTM) model for load forecasting is developed. A case study analysis shows that the proposed method can effectively protect user privacy and improve model prediction accuracy when dealing with heterogeneous data. The framework can train load-forecasting models with a fast convergence rate and better prediction performance than current mainstream federated learning algorithms.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] PriFairFed: A Local Differentially Private Federated Learning Algorithm for Client-Level Fairness
    Hu, Chuang
    Wu, Nanxi
    Shi, Siping
    Liu, Xuan
    Luo, Bing
    Wang, Kanye Ye
    Jiang, Jiawei
    Cheng, Dazhao
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3993 - 4005
  • [22] Differentially Private Federated Knowledge Graphs Embedding
    Peng, Hao
    Li, Haoran
    Song, Yangqiu
    Zheng, Vincent
    Li, Jianxin
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1416 - 1425
  • [23] Differentially private knowledge transfer for federated learning
    Tao Qi
    Fangzhao Wu
    Chuhan Wu
    Liang He
    Yongfeng Huang
    Xing Xie
    Nature Communications, 14
  • [24] Prediction of EV charging load based on federated learning
    Yin, Wanjun
    Ji, Jianbo
    ENERGY, 2025, 316
  • [25] A Federated Learning Algorithm That Combines DCScaffold and Differential Privacy for Load Prediction
    Xiao, Yong
    Jin, Xin
    Pan, Tingzhe
    Yu, Zhenwei
    Ding, Li
    ENERGIES, 2025, 18 (06)
  • [26] Differentially Private Federated Tensor Completion for Cloud-Edge Collaborative AIoT Data Prediction
    Yang, Zecan
    Xiong, Botao
    Chen, Kai
    Yang, Laurence T.
    Deng, Xianjun
    Zhu, Chenlu
    He, Yuanyuan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (01) : 256 - 267
  • [27] AdaDpFed: A Differentially Private Federated Learning Algorithm With Adaptive Noise on Non-IID Data
    Zhao, Zirun
    Sun, Yi
    Bashir, Ali Kashif
    Lin, Zhaowen
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2536 - 2545
  • [28] PDLB: An Effective Prediction-Based Dynamic Load Balancing Algorithm for Clustered Heterogeneous Computational Environment
    Thakor, Devendra
    Patel, Bankim
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 1, 2019, 707 : 593 - 603
  • [29] Differentially Private Federated Learning with Heterogeneous Group Privacy
    Jiang, Mingna
    Wei, Linna
    Cai, Guoyue
    Wu, Xuangou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 143 - 150
  • [30] FLDS: differentially private federated learning with double shufflers
    Qi, Qingqiang
    Yang, Xingye
    Hu, Chengyu
    Tang, Peng
    Su, Zhiyuan
    Guo, Shanqing
    COMPUTER JOURNAL, 2024,