Regulating Explainable Artificial Intelligence (XAI) May Harm Consumers

被引:0
|
作者
Mohammadi, Behnam [1 ]
Malik, Nikhil [2 ]
Derdenger, Tim [1 ]
Srinivasan, Kannan [1 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Univ Southern Calif, Marshall Sch Business, Los Angeles, CA 90089 USA
关键词
machine learning; explainable AI; economics of AI; regulation; fairness; BLACK-BOX;
D O I
10.1287/mksc.2022.0396
中图分类号
F [经济];
学科分类号
02 ;
摘要
The most recent artificial intelligence (AI) algorithms lack interpretability. Explainable artificial intelligence (XAI) aims to address this by explaining AI decisions to customers. Although it is commonly believed that the requirement of fully transparent XAI enhances consumer surplus, our paper challenges this view. We present a gametheoretic model where a policymaker maximizes consumer surplus in a duopoly market with heterogeneous customer preferences. Our model integrates AI accuracy, explanation depth, and method. We find that partial explanations can be an equilibrium in an unregulated setting. Furthermore, we identify scenarios where customers' and firms' desires for full explanation are misaligned. In these cases, regulating full explanations may not be socially optimal and could worsen the outcomes for firms and consumers. Flexible XAI policies outperform both full transparency and unregulated extremes.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Explainable Artificial Intelligence (XAI) Approach for Reinforcement Learning Systems
    Peixoto, Maria J. P.
    Azim, Akramul
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 971 - 978
  • [22] A New Perspective on hvaluation Methods for Explainable Artificial Intelligence (XAI)
    Speith, Timo
    Langer, Markus
    2023 IEEE 31ST INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS, REW, 2023, : 325 - 331
  • [23] Explainable Artificial Intelligence (XAI) Model for Cancer Image Classification
    Singhal, Amit
    Agrawal, Krishna Kant
    Quezada, Angeles
    Aguinaga, Adrian Rodriguez
    Jimenez, Samantha
    Yadav, Satya Prakash
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (01): : 401 - 441
  • [24] Unraveling the response of forests to drought with explainable artificial intelligence (XAI)
    Vulova, Stenka
    Horn, Katharina
    Rocha, Alby Duarte
    Brill, Fabio
    Somogyvari, Mark
    Okujeni, Akpona
    Foerster, Michael
    Kleinschmit, Birgit
    ECOLOGICAL INDICATORS, 2025, 172
  • [25] EXplainable Artificial Intelligence (XAI)-From Theory to Methods and Applications
    Ortigossa, Evandro S.
    Goncalves, Thales
    Nonato, Luis Gustavo
    IEEE ACCESS, 2024, 12 : 80799 - 80846
  • [26] Explainable artificial intelligence (XAI) in finance: a systematic literature review
    Cerneviciene, Jurgita
    Kabasinskas, Audrius
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (08)
  • [27] Explainable Artificial Intelligence (XAI) Approaches in Predictive Maintenance: A Review
    Sharma J.
    Mittal M.L.
    Soni G.
    Keprate A.
    Recent Patents on Engineering, 2024, 18 (05) : 18 - 26
  • [28] Counterfactuals in Explainable Artificial Intelligence (XAI): Evidence from Human Reasoning
    Byrne, Ruth M. J.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6276 - 6282
  • [29] Robust Network Intrusion Detection Through Explainable Artificial Intelligence (XAI)
    Barnard, Pieter
    Marchetti, Nicola
    Dasilva, Luiz A.
    IEEE Networking Letters, 2022, 4 (03): : 167 - 171
  • [30] A Proof of Concept Implementation of Explainable Artificial Intelligence (XAI) in Digital Forensics
    Hall, Stuart W.
    Sakzad, Amin
    Minagar, Sepehr
    NETWORK AND SYSTEM SECURITY, NSS 2022, 2022, 13787 : 66 - 85