Strict convexity of Orlicz spaces under renorming

被引:0
|
作者
Basar, Esra [1 ,2 ]
Oztop, Serap [3 ]
Uysal, Badik Huseyin [2 ,3 ]
Yasar, Seyma [2 ,4 ]
机构
[1] Yeditepe Univ, Fac Arts & Sci, Dept Math, TR-34755 Atasehir, Istanbul, Turkiye
[2] Istanbul Univ, Inst Grad Studies Sci, TR-34116 Sileymaniye, Istanbul, Turkiye
[3] Istanbul Univ, Fac Sci, Dept Math, TR-34134 Vezneciler, Istanbu, Turkiye
[4] Gebze Tech Univ, Fac Basic Sci, Dept Math, TR-41400 Gebze, Kocaeli, Turkiye
关键词
Strict convexity; Uniform convexity; Extreme point; Orlicz space; s-norm; EXTREME-POINTS; AMEMIYA NORM; ROTUNDITY;
D O I
10.1016/j.jmaa.2025.129236
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Phi be an Orlicz function and L Phi ( X, Sigma, mu ) be the corresponding Orlicz space on a non-atomic, sigma- finite, complete measure space ( X, Sigma, mu ). It is known that strict convexity of the whole spaces are the most essential and important geometric notion in the geometric theory of Banach spaces. So, we describe the strict convexity of Orlicz spaces equipped with the s- norm and some of its consequences. On the other hand, it is known that the geometric properties of Orlicz space depends on the norm. Thus, our study generalizes and unifies the results that have been obtained for the Orlicz norm, the Luxemburg norm and the p- Amemiya norm separately. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] P-convexity of Orlicz-Bochner function spaces endowed with the Orlicz norm
    Shang, Shaoqiang
    Cui, Yunan
    Fu, Yongqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 371 - 379
  • [32] A note on P-convexity of orlicz and Musielak-Orlicz spaces of Bochner type
    Hudzik, H
    Kolwicz, P
    FUNCTION SPACES, PROCEEDINGS, 2000, 213 : 181 - 191
  • [33] LOWER AND UPPER ESTIMATIONS OF THE MODULUS OF CONVEXITY IN SOME ORLICZ SPACES
    HUDZIK, H
    ARCHIV DER MATHEMATIK, 1991, 57 (01) : 80 - 87
  • [34] ON DIFFERENCE SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS WITHOUT CONVEXITY
    Dutta, H.
    Kocinac, L. D. R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (02): : 477 - 489
  • [35] Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications
    Fan, Xianling
    Guan, Chun-Xia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 163 - 175
  • [36] Characterization of the strict convexity of the Besicovitch-Musielak-Orlicz space of almost periodic functions
    Morsli, Mohamed
    Smaali, Mannal
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2007, 48 (03): : 443 - 458
  • [37] RENORMING OF DUAL SPACES
    JOHN, K
    ZIZLER, V
    ISRAEL JOURNAL OF MATHEMATICS, 1972, 12 (04) : 331 - &
  • [38] RENORMING OF DUAL SPACES
    JOHN, K
    ZIZLER, V
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 21 (01): : 47 - 50
  • [39] On some convexity properties of Orlicz sequence spaces equipped with the Luxemburg norm
    Hudzik, H
    Pallaschke, D
    MATHEMATISCHE NACHRICHTEN, 1997, 186 : 167 - 185
  • [40] Renorming spaces with greedy bases
    Dilworth, S. J.
    Kutzarova, D.
    Odell, E.
    Schlumprecht, Th.
    Zsak, A.
    JOURNAL OF APPROXIMATION THEORY, 2014, 188 : 39 - 56