Continuous glucose monitoring using machine learning models and IoT device data: A meta-analysis

被引:0
|
作者
Kapoor, Yagyesh [1 ]
Hasija, Yasha [1 ]
机构
[1] Delhi Technol Univ, Dept Biotechnol, Complex Syst & Genome Informat Lab, Delhi, India
关键词
Machine learning; diabetes; CGM; Internet of Things; blood glucose; hyperglycemia; PREDICTION; INTERNET;
D O I
10.3233/THC-241403IOSPress
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BACKGROUND: Machine learning offers diverse options for effectively managing blood glucose levels in diabetes patients. Selecting the right ML algorithm is critical given the array of available choices. Integrating data from IoT devices presents promising opportunities to enhance real-time blood glucose management models. OBJECTIVE: This meta-analysis aims to evaluate the effectiveness of machine learning models utilizing IoT device data for predicting blood glucose levels. METHODS: We systematically searched electronic databases for studies published between 2019 and 2023. We excluded studies lacking ML model derivation or performance metrics. The Quality Assessment of Diagnostic Accuracy Studies tool assessed study quality. Our primary outcomes compared ML models for BG level prediction across different prediction horizons RESULTS: We analyzed ten eligible studies across prediction horizons of 15, 30, 45, and 60 minutes. ML models exhibited mean absolute RMSE values of 15.02 (SD 1.45), 21.488 (SD 2.92), 30.094 (SD 3.245), and 35.89 (SD 6.4) mg/dL, respectively. Random Forest demonstrated superior performance across these PHs. CONCLUSION: We observed significant heterogeneity across all subgroups, indicating diverse sources of variability. As the PH lengthened, the RMSE for blood glucose prediction by the ML model increased, with Random Forest showing the highest relative performance among the ML models.
引用
收藏
页码:577 / 591
页数:15
相关论文
共 50 条
  • [31] Effects of Exercise on Continuous Glucose Monitoring Outcomes in Type 2 Diabetes: A Meta-analysis
    Munan, Matthew
    Oliveira, Camila Lemos Pinto
    Rees, Jordan
    Boule, Normand G.
    DIABETES, 2019, 68
  • [32] Continuous glucose monitoring in adults with type 2 diabetes: a systematic review and meta-analysis
    Milena Jancev
    Tessa A. C. M. Vissers
    Frank L. J. Visseren
    Arianne C. van Bon
    Erik H. Serné
    J. Hans DeVries
    Harold W. de Valk
    Thomas T. van Sloten
    Diabetologia, 2024, 67 : 798 - 810
  • [33] Continuous glucose monitoring in adults with type 2 diabetes: a systematic review and meta-analysis
    Jancev, Milena
    Vissers, Tessa A. C. M.
    Visseren, Frank L. J.
    van Bon, Arianne C.
    Serne, Erik H.
    DeVries, J. Hans
    de Valk, Harold W.
    van Sloten, Thomas T.
    DIABETOLOGIA, 2024, 67 (05) : 798 - 810
  • [34] Continuous glucose monitoring in diabetes patients with chronic kidney disease on dialysis: a meta-analysis
    Wang, Fei
    Wang, Dan
    Lu, Xi-Ling
    Sun, Xiao-Ming
    Duan, Bin-Hong
    MINERVA ENDOCRINOLOGY, 2022, 47 (03): : 325 - 333
  • [35] BENEFITS OF CONTINUOUS GLUCOSE MONITORING IN TYPE 1 DIABETES MELLITUS TREATMENT: A META-ANALYSIS
    Floyd, B. D.
    Hall, S. P.
    Umpierrez, G.
    Phillips, C. O.
    Alema-Mensah, E.
    Strayhorn, G.
    Ofili, E.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2010, 58 (02) : 387 - 388
  • [36] Professional continuous glucose monitoring in patients with diabetes mellitus: A systematic review and meta-analysis
    Di Molfetta, Sergio
    Caruso, Irene
    Cignarelli, Angelo
    Natalicchio, Annalisa
    Perrini, Sebastio
    Laviola, Luigi
    Giorgino, Francesco
    DIABETES OBESITY & METABOLISM, 2023, 25 (05): : 1301 - 1310
  • [37] IMPACT OF CONTINUOUS GLUCOSE MONITORING ON PSYCHOSOCIAL OUTCOMES IN TYPE 1 DIABETES - A META-ANALYSIS
    Zahn, D.
    Griem, K.
    Ziegler, C.
    Kubiak, T.
    INTERNATIONAL JOURNAL OF BEHAVIORAL MEDICINE, 2016, 23 : S120 - S121
  • [38] Efficient IoT Device Fingerprinting Approach using Machine Learning
    Osei, Richmond
    Louafi, Habib
    Mouhoub, Malek
    Zhu, Zhongwen
    SECRYPT : PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, 2022, : 525 - 533
  • [39] Women Safety Device Designed using IoT and Machine Learning
    Muskan
    Khandelwal, Teena
    Khandelwal, Manisha
    Pandey, Purnendu Shekhar
    2018 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2018, : 1204 - 1210
  • [40] Meta-analysis on continuous nerve monitoring in thyroidectomies
    Ku, Dominic
    Hui, Michelle
    Cheung, Phylannie
    Chow, Oliver
    Smith, Mark
    Riffat, Faruque
    Sritharan, Niranjan
    Kamani, Dipti
    Randolph, Gregory
    HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2021, 43 (12): : 3966 - 3978