Machine learning in echocardiography-based prediction model of cardiovascular diseases

被引:0
|
作者
Yasheng, Zubaire [1 ,2 ,3 ]
Zhao, Ruohan [1 ,2 ,3 ]
Zhu, Ye [1 ,2 ,3 ]
Zhang, Zisang [1 ,2 ,3 ]
Lv, Qing [1 ,2 ,3 ]
Xie, Mingxing [1 ,2 ,3 ]
Zhang, Li [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Ultrasound Med, Wuhan 430022, Hubei, Peoples R China
[2] Clin Res Ctr Med Imaging Hubei Prov, Wuhan 430022, Hubei, Peoples R China
[3] Hubei Prov Key Lab Mol Imaging, Wuhan 430022, Hubei, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1097/CM9.0000000000003350
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:228 / 230
页数:3
相关论文
共 50 条
  • [31] An Ensemble Learning Method for Constructing Prediction Model of Cardiovascular Diseases Recurrence
    Lee, Yen-Hsien
    Lin, Tin-Kwang
    Huang, Yu-Yang
    Chu, Tsai-Hsin
    HCI IN BUSINESS, GOVERNMENT AND ORGANIZATIONS, HCIBGO 2022, 2022, 13327 : 208 - 220
  • [32] Classification Model Based on Pathological Data for Kidney Diseases Prediction using Machine Learning Approach
    Elavarasi, S. Anitha
    Venkatesan, Kannan
    Murali, V
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (01) : 169 - 177
  • [33] EchoAGE: Echocardiography-based Neural Network Model Forecasting Heart Biological Age
    Kobelyatskaya, Anastasia A.
    Guvatova, Zulfiya G.
    Tkacheva, Olga N.
    Isaev, Fedor I.
    Kungurtseva, Anastasiia L.
    Vitebskaya, Alisa V.
    Kudryavtseva, Anna, V
    Plokhova, Ekaterina, V
    Machekhina, Lubov, V
    Strazhesko, Irina D.
    Moskalev, Alexey A.
    AGING AND DISEASE, 2025,
  • [34] Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches
    Sajid, Mirza Rizwan
    Almehmadi, Bader A.
    Sami, Waqas
    Alzahrani, Mansour K.
    Muhammad, Noryanti
    Chesneau, Christophe
    Hanif, Asif
    Khan, Arshad Ali
    Shahbaz, Ahmad
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (23)
  • [35] Cardiovascular phenotypes predict clinical outcomes in sickle cell disease: An echocardiography-based cluster analysis
    D'Humieres, Thomas
    Savale, Laurent
    Inamo, Jocelyn
    Deswarte, Simon
    Lionnet, Francois
    Loko, Gylna
    Chantalat, Christelle
    Damy, Thibaud
    Guillet, Henri
    d'Orengiani, Anne Laure Pham Hung d'Alexandry
    Galacteros, Frederic
    Audureau, Etienne
    Maitre, Bernard
    Humbert, Marc
    Derumeaux, Genevieve
    Bartolucci, Pablo
    Deux, Jean-Francois
    AMERICAN JOURNAL OF HEMATOLOGY, 2021, 96 (09) : 1166 - 1175
  • [36] Echocardiography-based pressure–volume loop assessment in the evaluation for the effects of indoxyl sulfate on cardiovascular function
    Masaru Obokata
    Koji Kurosawa
    Hideki Ishida
    Kyoko Ito
    Tetsuya Ogawa
    Yoshitaka Ando
    Masahiko Kurabayashi
    Kazuaki Negishi
    Journal of Echocardiography, 2019, 17 : 35 - 43
  • [37] Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases
    Ogunpola, Adedayo
    Saeed, Faisal
    Basurra, Shadi
    Albarrak, Abdullah M.
    Qasem, Sultan Noman
    DIAGNOSTICS, 2024, 14 (02)
  • [38] Efficient Data-Driven Machine Learning Models for Cardiovascular Diseases Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2023, 23 (03)
  • [39] Identifying the Main Risk Factors for Cardiovascular Diseases Prediction Using Machine Learning Algorithms
    Guarneros-Nolasco, Luis Rolando
    Cruz-Ramos, Nancy Aracely
    Alor-Hernandez, Giner
    Rodriguez-Mazahua, Lisbeth
    Sanchez-Cervantes, Jose Luis
    MATHEMATICS, 2021, 9 (20)
  • [40] Prediction of cardiovascular diseases by integrating multi-modal features with machine learning methods
    Li, Pengpai
    Hu, Yongmei
    Liu, Zhi-Ping
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 66