Hybrid fuzzy grammar dynamic graph diffusing attention network for traffic flow prediction

被引:0
|
作者
Zhang, Dongxue [1 ,2 ]
Zhang, Zhao [1 ,2 ]
Jiao, Xiaohong [1 ,2 ]
Zhang, Yahui [3 ]
机构
[1] Yanshan Univ, Minist Educ Intelligent Control Syst & Intelligent, Engn Res Ctr, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Peoples R China
[3] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Grammar network structure; Grammar rules; Fuzzy network; Unobservable information; LSTM;
D O I
10.1016/j.future.2025.107725
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Accurate and real-time traffic flow prediction is an indispensable part of the intelligent transportation system and is essential in improving traffic planning capability. However, due to the highly nonlinear and spatiotemporal fluctuation characteristics of the large-scale traffic network data, it is a challenging issue to establish an accurate and effective prediction model. In this regard, a hybrid fuzzy grammar dynamic graph diffusing attention network is proposed for traffic flow prediction. Firstly, the network utilizes the grammar network structure composed of grammar rules to synchronously capture the interactive information of observable traffic parameters and the dynamic spatio-temporal correlation of each node. Secondly, the network utilizes an improved graph attention network for spatio-temporal node aggregation and dynamic edge information extraction, effectively mitigating over-smoothing. Finally, the network combines hidden features captured by the grammar structure with the change rate of the traffic flow through the fuzzy network to deduce the blend of hidden features of observable and unobservable information. Simulation results on three real datasets show that the proposed model outperforms existing prediction methods under traffic networks.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] GMAN: A Graph Multi-Attention Network for Traffic Prediction
    Zheng, Chuanpan
    Fan, Xiaoliang
    Wang, Cheng
    Qi, Jianzhong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1234 - 1241
  • [32] RGDAN: A random graph diffusion attention network for traffic prediction
    Fan, Jin
    Weng, Wenchao
    Tian, Hao
    Wu, Huifeng
    Zhu, Fu
    Wu, Jia
    NEURAL NETWORKS, 2024, 172
  • [33] Spatiotemporal Graph Attention Networks for Urban Traffic Flow Prediction
    Zhao, Yuanpeng
    Xu, Yepeng
    He, Xitao
    Zhang, Dengyin
    2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, : 340 - 345
  • [34] Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network
    Ge, Yun
    Zhai, Jian F.
    Su, Pei C.
    Journal of Advanced Transportation, 2022, 2022
  • [35] Surrounding vehicle trajectory prediction under mixed traffic flow based on graph attention network
    Gao, Yuan
    Fu, Jinlong
    Feng, Wenwen
    Xu, Tiandong
    Yang, Kaifeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 639
  • [36] Temporal attention aware dual-graph convolution network for air traffic flow prediction
    Cai, Kaiquan
    Shen, Zhiqi
    Luo, Xiaoyan
    Li, Yue
    JOURNAL OF AIR TRANSPORT MANAGEMENT, 2023, 106
  • [37] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576
  • [38] Surrounding vehicle trajectory prediction under mixed traffic flow based on graph attention network
    Gao, Yuan
    Fu, Jinlong
    Feng, Wenwen
    Xu, Tiandong
    Yang, Kaifeng
    Physica A: Statistical Mechanics and its Applications, 2024, 639
  • [39] Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network
    Ge, Yun
    Zhai, Jian F.
    Su, Pei C.
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [40] Self-attention Based Multimodule Fusion Graph Convolution Network for Traffic Flow Prediction
    Li, Lijie
    Shao, Hongyang
    Chen, Junhao
    Wang, Ye
    DATA SCIENCE (ICPCSEE 2022), PT I, 2022, 1628 : 3 - 16