Hybrid fuzzy grammar dynamic graph diffusing attention network for traffic flow prediction

被引:0
|
作者
Zhang, Dongxue [1 ,2 ]
Zhang, Zhao [1 ,2 ]
Jiao, Xiaohong [1 ,2 ]
Zhang, Yahui [3 ]
机构
[1] Yanshan Univ, Minist Educ Intelligent Control Syst & Intelligent, Engn Res Ctr, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Peoples R China
[3] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Grammar network structure; Grammar rules; Fuzzy network; Unobservable information; LSTM;
D O I
10.1016/j.future.2025.107725
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Accurate and real-time traffic flow prediction is an indispensable part of the intelligent transportation system and is essential in improving traffic planning capability. However, due to the highly nonlinear and spatiotemporal fluctuation characteristics of the large-scale traffic network data, it is a challenging issue to establish an accurate and effective prediction model. In this regard, a hybrid fuzzy grammar dynamic graph diffusing attention network is proposed for traffic flow prediction. Firstly, the network utilizes the grammar network structure composed of grammar rules to synchronously capture the interactive information of observable traffic parameters and the dynamic spatio-temporal correlation of each node. Secondly, the network utilizes an improved graph attention network for spatio-temporal node aggregation and dynamic edge information extraction, effectively mitigating over-smoothing. Finally, the network combines hidden features captured by the grammar structure with the change rate of the traffic flow through the fuzzy network to deduce the blend of hidden features of observable and unobservable information. Simulation results on three real datasets show that the proposed model outperforms existing prediction methods under traffic networks.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Gdformer:A Graph Diffusing Attention Based Approach for Traffic Flow Prediction
    Su, Jie
    Ren, Jie
    Yang, Jiandang
    Liu, Yong
    SSRN, 2022,
  • [2] GDFormer: A Graph Diffusing Attention based approach for Traffic Flow Prediction
    Su, Jie
    Jin, Zhongfu
    Ren, Jie
    Yang, Jiandang
    Liu, Yong
    PATTERN RECOGNITION LETTERS, 2022, 156 : 126 - 132
  • [3] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Chen, Yuguang
    Huang, Jintao
    Xu, Hongbin
    Guo, Jincheng
    Su, Linyong
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Yuguang Chen
    Jintao Huang
    Hongbin Xu
    Jincheng Guo
    Linyong Su
    Scientific Reports, 13
  • [5] A spatio-temporal grammar graph attention network with adaptive edge information for traffic flow prediction
    Zhang, Zhao
    Jiao, Xiaohong
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28787 - 28803
  • [6] A spatio-temporal grammar graph attention network with adaptive edge information for traffic flow prediction
    Zhao Zhang
    Xiaohong Jiao
    Applied Intelligence, 2023, 53 : 28787 - 28803
  • [7] A self-attention dynamic graph convolution network model for traffic flow prediction
    Liao, Kaili
    Zhou, Wuneng
    Wu, Wanpeng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [8] Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
    Feng, Xiaoyuan
    Chen, Yue
    Li, Hongbo
    Ma, Tian
    Ren, Yilong
    SUSTAINABILITY, 2023, 15 (09)
  • [9] Dynamic Spatiotemporal Graph Wavelet Network for Traffic Flow Prediction
    Xu, Weijian
    Liu, Jingjin
    Yan, Jingwen
    Yang, Juan
    Liu, Huifen
    Zhou, Teng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 8019 - 8029
  • [10] A Dynamic Heterogeneous Graph Convolution Network For Traffic Flow Prediction
    Li, He
    Jin, Duo
    Li, XueJiao
    Qiao, Shaojie
    COMPUTER JOURNAL, 2024, 67 (01): : 31 - 44