Low-Temperature Contacts and the Coulomb Blockade Effect in Layered Nanoribbons with In-Plane Anisotropy

被引:0
|
作者
Verzhbitskiy, Ivan A. [1 ,2 ]
Mishra, Abhishek [1 ,2 ]
Mitra, Sanchali [3 ]
Zhang, Zhepeng [4 ]
Das, Sarthak [1 ,2 ]
Lau, Chit Siong [1 ,2 ,3 ]
Lee, Rainer [1 ,2 ]
Huang, Ding [1 ,2 ]
Eda, Goki [4 ,5 ,6 ]
Ang, Yee Sin [3 ]
Goh, Kuan Eng Johnson [1 ,2 ,4 ,7 ]
机构
[1] ASTAR, Quantum Innovat Ctr Q InC, Singapore 138634, Singapore
[2] Agcy Sci Tech & Res ASTAR, Inst Mat Res & Engn IMRE, Singapore 138634, Singapore
[3] Singapore Univ Technol & Design, Sci Math & Technol, Singapore 487372, Singapore
[4] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[5] Natl Univ Singapore, Ctr Adv 2D Mat, Singapore 117546, Singapore
[6] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[7] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, 21 Nanyang Link, Singapore 637371, Singapore
基金
新加坡国家研究基金会;
关键词
van der Waals; titanium trisulfide; 1D; ohmic contacts; quantum dot; single-electron transistor; TITANIUM TRISULFIDE MONOLAYER; BAND-GAP; QUANTUM; SEMICONDUCTOR; TRANSITION; MOS2;
D O I
10.1021/acsnano.4c15086
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One-dimensional (1D) nanoribbons (NRs) constitute rapidly advancing nanotechnology with significant potential for emerging applications such as quantum sensing and metrology. TiS3 nanoribbons exhibit strong in-plane crystal anisotropy, enabling robust 1D confinement and resilience to edge disorder. Nevertheless, charge transport in 1D TiS3 remains relatively unexplored, particularly at low temperatures, where high contact resistance impacts device performance and fundamentally limits its applications. Here, we engineer electrical contacts between a bulk metal and a 1D NR and explore the low-temperature characteristics of the 1D field-effect devices. We report ohmic contacts for 1D TiS3 with temperature-independent contact resistances as low as 2.7 +/- 0.3 k Omega<middle dot>mu m, enabling the study of charge transport at low temperatures (down to 35 mK) and clear observation of the Coulomb blockade effect. We demonstrate single-electron transport in 1D TiS3 and perform excited state spectroscopy and magnetospectroscopy, extracting an out-of-plane electron g-factor, g = 1.8 +/- 0.3.
引用
收藏
页码:10878 / 10888
页数:11
相关论文
共 50 条
  • [21] THE COULOMB GAS AT LOW-TEMPERATURE AND LOW-DENSITY
    CONLON, JG
    LIEB, EH
    YAU, HT
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (01) : 153 - 180
  • [22] Tuning in-plane magnetic anisotropy and temperature stability in amorphous trilayers
    Loefstrand, Julia
    Rani, Parul
    Joensson, Petra E.
    Andersson, Gabriella
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 586
  • [23] Temperature dependence of in-plane magnetic anisotropy of Co/Fe multilayers
    Rateo, M
    Carbucicchio, M
    Ghidini, M
    Solzi, M
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 : 1240 - 1241
  • [24] In-plane anisotropy of the optical and electrical properties of layered ReS2 crystals
    Ho, CH
    Huang, YS
    Tiong, KK
    Liao, PC
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (27) : 5367 - 5375
  • [25] Low-Temperature Kinetics and Dynamics with Coulomb Crystals
    Heazlewood, Brianna R.
    Softley, Timothy P.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 66, 2015, 66 : 475 - 495
  • [26] Low-temperature growth and photoluminescence property of ZnS nanoribbons
    Zhang, ZX
    Wang, JX
    Yuan, HJ
    Gao, Y
    Liu, DF
    Song, L
    Xiang, YJ
    Zhao, XW
    Liu, LF
    Luo, SD
    Dou, XY
    Mou, SC
    Zhou, WY
    Xie, SS
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (39): : 18352 - 18355
  • [27] IN-PLANE ANISOTROPY EFFECT ON CRITICAL TRANSITION FIELD IN NANOGRANULAR FILMS WITH PERPENDICULAR ANISOTROPY
    Kulyk, M. M.
    Kalita, V. M.
    Lozenko, A. F.
    Ryabchenko, S. M.
    Stognei, O. V.
    Sitnikov, A. V.
    UKRAINIAN JOURNAL OF PHYSICS, 2015, 60 (01): : 52 - 63
  • [28] Effect of Biaxial Anisotropy on the Domain Structure in Ferrite–Garnet Films with In-Plane Anisotropy
    Nikoladze G.M.
    Matyunin A.V.
    Polyakov P.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2021, 85 (11) : 1222 - 1225
  • [29] Low-Temperature Diffusion in Coated Contacts.
    Haessner, Alfred
    Stange, Harald W.
    Nachrichtentechnik Elektronik, 1979, 29 (09): : 365 - 368
  • [30] LOW-TEMPERATURE REACTIONS AT SILICON METAL CONTACTS
    MCCALDIN, JO
    THIN SOLID FILMS, 1977, 45 (01) : 86 - 86