Robot Navigation in Unseen Environments using Coarse Maps

被引:0
|
作者
Xu, Chengguang [1 ]
Amato, Christopher [1 ]
Wong, Lawson L. S. [1 ]
机构
[1] Northeastern Univ, Khoury Coll Comp Sci, Boston, MA 02115 USA
关键词
D O I
10.1109/ICRA57147.2024.10611256
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Metric occupancy maps are widely used in autonomous robot navigation systems. However, when a robot is deployed in an unseen environment, building an accurate metric map is time-consuming. Can an autonomous robot directly navigate in previously unseen environments using coarse maps? In this work, we propose the Coarse Map Navigator (CMN), a navigation framework that can perform robot navigation in unseen environments using different coarse maps. To do so, CMN addresses two challenges: (1) novel and realistic visual observations; (2) error and misalignment on coarse maps. To tackle novel visual observations in unseen environments, CMN learns a deep perception model that maps the visual input from various pixel spaces to the local occupancy grid space. To tackle the error and misalignment on coarse maps, CMN extends the Bayesian filter and maintains a belief directly on coarse maps using the predicted local occupancy grids as observations. Using the latest belief, CMN extracts a global heuristic vector that guides the planner to find a local navigation action. Empirical results demonstrate that CMN achieves high navigation success rates in unseen environments, significantly outperforming baselines, and is robust to different coarse maps.
引用
收藏
页码:2932 / 2938
页数:7
相关论文
共 50 条
  • [41] Robot navigation planning problems in dynamic environments
    Urimiezius, R.
    Bartkevicius, S.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2008, (06) : 93 - 96
  • [42] Guide robot intelligent navigation in urban environments
    Capi, G.
    Kitani, M.
    Ueki, K.
    ADVANCED ROBOTICS, 2014, 28 (15) : 1043 - 1053
  • [43] A general platform for robot navigation in natural environments
    Celaya, Enric
    Creemers, Tom
    Albarral, Jos Luis
    CLIMBING AND WALKING ROBOTS, 2006, : 851 - 858
  • [44] Virtual Robot Experiments for Navigation in Structured Environments
    Knoll, Jacob
    Hevrdejs, Kyle
    Malinowski, Aleksander
    Miah, Suruz
    2017 IEEE 26TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2017, : 1173 - 1178
  • [45] Reinforcement Learning for Robot Navigation in Nondeterministic Environments
    Liu, Xiaoyun
    Zhou, Qingrui
    Ren, Hailin
    Sun, Changhao
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 615 - 619
  • [46] nRobotic Mobile Robot Navigation Using Traffic Signs in Unknown Indoor Environments
    Purcaru, Constantin
    Precup, Radu-Emil
    Iercan, Daniel
    Fedorovici, Lucian-Ovidiu
    Dohangie, Bogdan
    Dragan, Florin
    2013 IEEE 8TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2013), 2013, : 29 - 34
  • [47] Mobile Robot Navigation Using MLP-BP Approaches in Dynamic Environments
    Singh, Ngangbam Herojit
    Thongam, Khelchandra
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (12) : 8013 - 8028
  • [48] Robot Navigation in Dynamic Environments using Fuzzy Logic and Trajectory Prediction Table
    Chinag, Cheng-Hsiung
    Ding, Chiehyi
    2014 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2014), 2014, : 99 - 104
  • [49] Mobile Robot Navigation Using MLP-BP Approaches in Dynamic Environments
    Ngangbam Herojit Singh
    Khelchandra Thongam
    Arabian Journal for Science and Engineering, 2018, 43 : 8013 - 8028
  • [50] All Aware Robot Navigation in Human Environments Using Deep Reinforcement Learning
    Lu, Xiaojun
    Faragasso, Angela
    Yamashita, Atsushi
    Asama, Hajime
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 5989 - 5996