Mechanical properties and failure modes of polypropylene fiber-reinforced foamed concrete subjected to high strain rates and large compressive deformation: effects of fiber content and length

被引:0
|
作者
Chen, Longyang [1 ]
Li, Penghui [2 ]
Guo, Weiguo [1 ]
Zhang, Dongjian [1 ]
Wang, Ruifeng [1 ]
Gao, Meng [1 ]
Yuan, Kangbo [3 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian, Shannxi, Peoples R China
[2] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing, Peoples R China
[3] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Polypropylene fiber; foamed concrete; high strain rete; fiber length; fiber content; HIGH PERFORMANCE CONCRETE; FIRE RESISTANCE; COMPOSITES; STRENGTH; POROSITY; UHPC;
D O I
10.1080/21650373.2024.2424924
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study investigates the mechanical properties of polypropylene fiber-reinforced foamed concrete (PPFRFC) under high strain rates and large compressive deformation, focusing on the effects of varying fiber contents and lengths. Results show both peak and plateau stress increase with fiber content, reaching a maximum at 1.5 wt.% before decreasing. Similarly, increased fiber length enhances both stresses, but beyond 9 and 14 mm, they decline. The dynamic increase factor is sensitive to fiber content and length, with the lowest values observed at 1.5 wt.% content and 9 mm or 14 mm length. Failure mode analysis shows that as fiber content increases, damage extent decreases, with fewer fragments. At 1.5 and 2.0 wt.%, specimens largely retain their overall contour after impact, while fiber length has a smaller effect on failure mode.
引用
收藏
页码:36 / 54
页数:19
相关论文
共 50 条
  • [41] Experimental investigations on mechanical properties of hybrid steel-polypropylene fiber-reinforced concrete
    Shan, Liang
    Zhang, Liang
    Xu, Lihua
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING III, PT 1, 2014, 638-640 : 1550 - +
  • [42] Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites
    Unterweger, Christoph
    Mayrhofer, Tina
    Piana, Francesco
    Duchoslav, Jiri
    Stifter, David
    Poitzsch, Claudia
    Furst, Christian
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 188
  • [43] Mechanical properties of high-strength steel fiber-reinforced concrete
    Song, PS
    Hwang, S
    CONSTRUCTION AND BUILDING MATERIALS, 2004, 18 (09) : 669 - 673
  • [44] Mechanical properties of jute fiber-reinforced high-strength concrete
    Zhang, Tiezhi
    Yin, Yong
    Gong, Yaqi
    Wang, Lijiu
    STRUCTURAL CONCRETE, 2020, 21 (02) : 703 - 712
  • [45] Effect of fiber content and fiber length on the dynamic compressive properties of strain-hardening ultra-high performance concrete
    Zhang, Dong
    Tu, Huan
    Li, Ye
    Weng, Yiwei
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 328
  • [46] Effect of High Temperature on the Mechanical Properties of Steel Fiber-Reinforced Concrete
    Bezerra, Augusto C. S.
    Maciel, Priscila S.
    Correa, Elaine C. S.
    Soares Junior, Paulo R. R.
    Aguilar, Maria T. P.
    Cetlin, Paulo R.
    FIBERS, 2019, 7 (12)
  • [47] Spalling behavior of high-strength polypropylene fiber-reinforced concrete subjected to elevated temperature
    Wu, Chung-Hao
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (19) : 10657 - 10669
  • [48] Effects of fiber geometry and cryogenic condition on mechanical properties of ultra-high-performance fiber-reinforced concrete
    Kim, Min-Jae
    Yoo, Doo-Yeol
    Kim, Soonho
    Shin, Minsik
    Banthia, Nemkumar
    CEMENT AND CONCRETE RESEARCH, 2018, 107 : 30 - 40
  • [49] Effects of Single and Hybrid Steel Fiber Lengths and Fiber Contents on the Mechanical Properties of High-Strength Fiber-Reinforced Concrete
    Kim, Kyoung-Chul
    Yang, In-Hwan
    Joh, Changbin
    ADVANCES IN CIVIL ENGINEERING, 2018, 2018
  • [50] Experimental Study on the Mechanical Properties, Water Absorption, and Fiber Degradation of Naturally Aged Glass Fiber and Polypropylene Fiber-Reinforced Concrete
    Yuan, Zhu
    Jia, Yanmin
    MATERIALS, 2022, 15 (11)