Semi-supervised Contrastive VAE for Disentanglement of Digital Pathology Images

被引:0
|
作者
Hasan, Mahmudul [1 ]
Hu, Xiaoling [2 ]
Abousamra, Shahira [1 ]
Prasanna, Prateek [1 ]
Saltz, Joel [1 ]
Chen, Chao [1 ]
机构
[1] SUNY Stony Brook, Stony Brook, NY 11794 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
Disentanglement; Contrastive VAE; Digital Pathology;
D O I
10.1007/978-3-031-72083-3_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the strong prediction power of deep learning models, their interpretability remains an important concern. Disentanglement models increase interpretability by decomposing the latent space into interpretable subspaces. In this paper, we propose the first disentanglement method for pathology images. We focus on the task of detecting tumor-infiltrating lymphocytes (TIL). We propose different ideas including cascading disentanglement, novel architecture, and reconstruction branches. We achieve superior performance on complex pathology images, thus improving the interpretability and even generalization power of TIL detection deep learning models. Our codes are available at https://github.com/Shauqi/SS- cVAE.
引用
收藏
页码:459 / 469
页数:11
相关论文
共 50 条
  • [31] CONTRASTIVE LEARNING FOR ONLINE SEMI-SUPERVISED GENERAL CONTINUAL LEARNING
    Michel, Nicolas
    Negrel, Romain
    Chierchia, Giovanni
    Bercher, Jean-Francois
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1896 - 1900
  • [32] Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation
    Zhong, Yuanyi
    Yuan, Bodi
    Wu, Hong
    Yuan, Zhiqiang
    Peng, Jian
    Wang, Yu-Xiong
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7253 - 7262
  • [33] SSCL: Semi-supervised Contrastive Learning for Industrial Anomaly Detection
    Cai, Wei
    Gao, Jiechao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 100 - 112
  • [34] Adversarial Dense Contrastive Learning for Semi-Supervised Semantic Segmentation
    Wang, Ying
    Xuan, Ziwei
    Ho, Chiuman
    Qi, Guo-Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4459 - 4471
  • [35] Momentum Contrastive Teacher for Semi-Supervised Skeleton Action Recognition
    Lu, Mingqi
    Lu, Xiaobo
    Liu, Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 295 - 305
  • [36] Semi-Supervised Graph Contrastive Learning With Virtual Adversarial Augmentation
    Dong, Yixiang
    Luo, Minnan
    Li, Jundong
    Liu, Ziqi
    Zheng, Qinghua
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4232 - 4244
  • [37] Semi-Supervised Contrastive Learning With Similarity Co-Calibration
    Zhang, Yuhang
    Zhang, Xiaopeng
    Li, Jie
    Qiu, Robert C.
    Xu, Haohang
    Tian, Qi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1749 - 1759
  • [38] Semi-Supervised Group Emotion Recognition Based on Contrastive Learning
    Zhang, Jiayi
    Wang, Xingzhi
    Zhang, Dong
    Lee, Dah-Jye
    ELECTRONICS, 2022, 11 (23)
  • [39] A contrastive consistency semi-supervised left atrium segmentation model
    Liu, Yashu
    Wang, Wei
    Luo, Gongning
    Wang, Kuanquan
    Li, Shuo
    Computerized Medical Imaging and Graphics, 2022, 99
  • [40] Continual semi-supervised learning through contrastive interpolation consistency
    Boschini, Matteo
    Buzzega, Pietro
    Bonicelli, Lorenzo
    Porrello, Angelo
    Calderara, Simone
    PATTERN RECOGNITION LETTERS, 2022, 162 : 9 - 14