Semi-supervised Contrastive VAE for Disentanglement of Digital Pathology Images

被引:0
|
作者
Hasan, Mahmudul [1 ]
Hu, Xiaoling [2 ]
Abousamra, Shahira [1 ]
Prasanna, Prateek [1 ]
Saltz, Joel [1 ]
Chen, Chao [1 ]
机构
[1] SUNY Stony Brook, Stony Brook, NY 11794 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
Disentanglement; Contrastive VAE; Digital Pathology;
D O I
10.1007/978-3-031-72083-3_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the strong prediction power of deep learning models, their interpretability remains an important concern. Disentanglement models increase interpretability by decomposing the latent space into interpretable subspaces. In this paper, we propose the first disentanglement method for pathology images. We focus on the task of detecting tumor-infiltrating lymphocytes (TIL). We propose different ideas including cascading disentanglement, novel architecture, and reconstruction branches. We achieve superior performance on complex pathology images, thus improving the interpretability and even generalization power of TIL detection deep learning models. Our codes are available at https://github.com/Shauqi/SS- cVAE.
引用
收藏
页码:459 / 469
页数:11
相关论文
共 50 条
  • [1] SEMI-SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES BASED ON CONTRASTIVE LEARNING CONSTRAINT
    Ding, Junyuan
    Wen, Yue
    Ren, Weixin
    Zhang, Lei
    Wei, Wei
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7273 - 7276
  • [2] CONTRASTIVE SEMI-SUPERVISED LEARNING FOR ASR
    Xiao, Alex
    Fuegen, Christian
    Mohamed, Abdelrahman
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3870 - 3874
  • [3] Contrastive Regularization for Semi-Supervised Learning
    Lee, Doyup
    Kim, Sungwoong
    Kim, Ildoo
    Cheon, Yeongjae
    Cho, Minsu
    Han, Wook-Shin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3910 - 3919
  • [4] Towards controllable image descriptions with semi-supervised VAE
    Zakharov, Nikolai
    Su, Hang
    Zhu, Jun
    Glaescher, Jan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 63
  • [5] Reliable Contrastive Learning for Semi-Supervised Change Detection in Remote Sensing Images
    Wang, Jia-Xin
    Li, Teng
    Chen, Si-Bao
    Tang, Jin
    Luo, Bin
    Wilson, Richard C.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Semi-Supervised Semantic Segmentation of Remote Sensing Images With Iterative Contrastive Network
    Wang, Jia-Xin
    Chen, Si-Bao
    Ding, Chris H. Q.
    Tang, Jin
    Luo, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Semi-Supervised Anomaly Detection with Contrastive Regularization
    Jezequel, Loic
    Vu, Ngoc-Son
    Beaudet, Jean
    Histace, Aymeric
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2664 - 2671
  • [8] A Probabilistic Contrastive Framework for Semi-Supervised Learning
    Lin, Huibin
    Zhang, Chun-Yang
    Wang, Shiping
    Guo, Wenzhong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8767 - 8779
  • [9] Semi-supervised contrastive regression for pharmaceutical processes
    Li, Yinlong
    Liao, Yilin
    Sun, Ziyue
    Liu, Xinggao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [10] Semi-Supervised Contrastive Learning for Few-Shot Segmentation of Remote Sensing Images
    Chen, Yadang
    Wei, Chenchen
    Wang, Duolin
    Ji, Chuanjun
    Li, Baozhu
    REMOTE SENSING, 2022, 14 (17)