Lattice Distortions Promoting the In-Depth Reconstruction of Ni-Based Electrocatalysts with Enriched Oxygen Vacancies for the Electrochemical Oxidation of 5-Hydroxymethylfurfural toward 2,5-Furandicarboxylic Acid

被引:0
|
作者
Kou, Yuanxin [1 ,2 ]
Wang, Fanan [3 ]
Lin, Yun [1 ,2 ]
Liu, Di [3 ]
Li, Mengtao [3 ]
Zhang, Yan [1 ,2 ]
Wen, Wenting [3 ]
Huang, Junhong [1 ,2 ]
Weng, Rengui [3 ]
Xu, Gang [1 ,2 ]
机构
[1] Fujian Normal Univ, Coll Chem & Mat Sci, Fujian Prov Key Lab Adv Mat Oriented Chem Engn, Fuzhou 350007, Peoples R China
[2] Fujian Normal Univ, Coll Chem & Mat Sci, Fujian Prov Key Lab Polymer Mat, Fuzhou 350007, Peoples R China
[3] Fujian Univ Technol, Inst Biol & Chem, Fuzhou 350118, Fujian, Peoples R China
关键词
EVOLUTION REACTION; NICKEL-OXIDE; SITU RAMAN; HYDROXIDE; STABILITY; EFFICIENT; COBALT;
D O I
10.1021/acs.inorgchem.4c03764
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) toward 2,5-furandicarboxylic acid (FDCA) has been considered a promising approach for the substitution of the energy-consuming and hazardous oxygen evolution reaction and for the valorization of renewable biomass. However, it is limited by the susceptibility of HMF to the oxidative environment and requires efficient electrocatalysts. Herein, a NiMo complex (NiMo-N) is provided as the precatalyst for the HMFOR, exhibiting favorable performances with a current density of 450 mA<middle dot>cm-2 achieved at an anodic potential of 1.4 V vs RHE (similarly hereinafter) with 50 mmol/L (mM) HMF and over 95% HMF conversion and FDCA FE for at least five cycles. Combined with quasi situ and in situ analysis, it is confirmed that the extensive lattice distortions in the precatalyst facilitate the in-depth reconstruction, increasing the accessible Ni sites and defective oxygen vacancies (Ov), which would promptly convert to high-valence Ni and active O species during the reaction. The improved performance is then attributed to the incorporation of the improved chemisorption and dehydrogenation ability of HMF by the as-evolved active sites.
引用
收藏
页码:1666 / 1676
页数:11
相关论文
共 50 条
  • [31] A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions
    Siankevich, Sviatlana
    Savoglidis, Georgios
    Fei, Zhaofu
    Laurenczy, Gabor
    Alexander, Duncan T. L.
    Yan, Ning
    Dyson, Paul J.
    JOURNAL OF CATALYSIS, 2014, 315 : 67 - 74
  • [32] Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Lokhande, Priya
    Dhepe, Paresh L.
    Wilson, Karen
    Lee, Adam F.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2024, 77 (10)
  • [33] Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles
    Chadderdon, David J.
    Xin, Le
    Qi, Ji
    Qiu, Yang
    Krishna, Phani
    More, Karren L.
    Li, Wenzhen
    GREEN CHEMISTRY, 2014, 16 (08) : 3778 - 3786
  • [34] Reaction Mechanism and Kinetics of the Liquid-Phase Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Chen, Shuaibo
    Guo, Xusheng
    Ban, Heng
    Pan, Teng
    Zheng, Liping
    Cheng, Youwei
    Wang, Lijun
    Li, Xi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (47) : 16887 - 16898
  • [35] A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Peng, Yani
    Qiu, Boya
    Ding, Shengzhe
    Hu, Min
    Zhang, Yuxin
    Jiao, Yilai
    Fan, Xiaolei
    Parlett, Christopher M. A.
    CHEMPLUSCHEM, 2024, 89 (01):
  • [36] Electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid catalyzed by bio-inspired NiMn layered double hydroxide
    Bao, Yide-Rigen
    Duan, Yu
    Na, Yong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (35) : 18668 - 18671
  • [37] Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO2
    Hayashi, Eri
    Komanoya, Tasuku
    Kamata, Keigo
    Hara, Michikazu
    CHEMSUSCHEM, 2017, 10 (04) : 654 - 658
  • [38] Effect of MnO2 Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Hayashi, Eri
    Yamaguchi, Yui
    Kamata, Keigo
    Tsunoda, Naoki
    Kumagai, Yu
    Oba, Fumiyasu
    Hara, Michikazu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (02) : 890 - 900
  • [39] Aerobic Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid over Gold Stabilized on Zirconia-Based Supports
    Rabee, Abdallah I. M.
    Le, Son Dinh
    Higashimine, Koichi
    Nishimura, Shun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (18): : 7150 - 7161
  • [40] Regulation of oxygen vacancy in Mn-Co oxides to enhance selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Li, Mingfu
    Hu, Shuanglan
    Zhang, Yingchuan
    Qin, Jiannan
    Min, Douyong
    Chen, Chunlin
    Zhang, Pingjun
    Jiang, Liqun
    Zhang, Jian
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 368