Attention LinkNet-152: a novel encoder-decoder based deep learning network for automated spine segmentation

被引:0
|
作者
Aqsa Dastgir [1 ]
Wang Bin [1 ]
Muhammad Usman Saeed [1 ]
Jinfang Sheng [1 ]
Luo Site [2 ]
Haseeb Hassan [2 ]
机构
[1] Central South University,School of Computer Science and Engineering
[2] Shenzhen Technology University,College of Health Science and Environmental Engineering
关键词
D O I
10.1038/s41598-025-95243-z
中图分类号
学科分类号
摘要
Segmenting the spine from CT images is crucial for diagnosing and treating spine-related conditions but remains challenging due to the spine’s complex anatomy and imaging artifacts. This study introduces a novel encoder-decoder-based deep learning approach, named LinkNet-152, tailored for automated spine segmentation. The model integrates a modified EfficientNetB7 encoder with attention modules to enhance feature extraction by focusing on regions of interest. The decoder leverages a modified LinkNet architecture, replacing ResNet34 with the deeper ResNet152 to improve feature extraction and segmentation accuracy. Additionally, gradient sensitivity-based pruning is applied to optimize the model’s complexity and computational efficiency. Evaluated on the VerSe 2019 and VerSe 2020 datasets, the proposed model achieves superior performance, with a Dice coefficient of 96.85% and a Jaccard index of 95.37%, outperforming state-of-the-art methods. These results highlight the model’s effectiveness in addressing the challenges of spine segmentation and its potential to advance clinical applications.
引用
收藏
相关论文
共 50 条
  • [31] A Novel Deep Learning-Based Encoder-Decoder Model for Remaining Useful Life Prediction
    Liu, Hui
    Liu, Zhenyu
    Jia, Weiqiang
    Lin, Xianke
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [32] Breathing Sound Segmentation and Detection Using Transfer Learning Techniques on an Attention-Based Encoder-Decoder Architecture
    Hsiao, Chiu-Han
    Lin, Ting-Wei
    Lin, Chii-Wann
    Hsu, Fu-Shun
    Lin, Frank Yeong-Sung
    Chen, Chung-Wei
    Chung, Chi-Ming
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 754 - 759
  • [33] A DWT-based encoder-decoder network for Specularity segmentation in colonoscopy images
    Vanshali Sharma
    M. K. Bhuyan
    Pradip K. Das
    Kangkana Bora
    Multimedia Tools and Applications, 2023, 82 : 40065 - 40084
  • [34] Encoder-Decoder Convolutional Neural Network based Iris-Sclera Segmentation
    Sahin, Gurkan
    Susuz, Orkun
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [35] CloudRaednet: residual attention-based encoder-decoder network for ground-based cloud images segmentation in nychthemeron
    Shi, Chaojun
    Zhou, Yatong
    Qiu, Bo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (06) : 2059 - 2075
  • [36] Convolutional neural network based encoder-decoder architectures for semantic segmentation of plants
    Kolhar, Shrikrishna
    Jagtap, Jayant
    ECOLOGICAL INFORMATICS, 2021, 64
  • [37] Attention-Gate-Based Encoder-Decoder Network for Automatical Building Extraction
    Deng, Wenjing
    Shi, Qian
    Li, Jun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 2611 - 2620
  • [38] MGU-Net: a multiscale gate attention encoder-decoder network for medical image segmentation
    Liu, Le
    Chen, Qi
    Su, Jian
    Du, Xiao Gang
    Lei, Tao
    Wan, Yong
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2023, 71 (04) : 275 - 285
  • [39] Attention-Based Encoder-Decoder Network for Prediction of Electromagnetic Scattering Fields
    Zhang, Ying
    He, Mang
    2022 IEEE 10TH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION, APCAP, 2022,
  • [40] MapSegNet: A Fully Automated Model Based on the Encoder-Decoder Architecture for Indoor Map Segmentation
    Foroughi, Farzin
    Wang, Jikai
    Nemati, Alireza
    Chen, Zonghai
    Pei, Haoyuan
    IEEE ACCESS, 2021, 9 : 101530 - 101542