Independent domination in trees

被引:0
|
作者
Venkatakrishnan, Y. B. [1 ]
机构
[1] SASTRA Deemed Univ, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, Tamil Nadu, India
关键词
Independent dominating set; dominating set; trees;
D O I
10.1142/S1793830924501015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V,E) be a simple connected graph. A dominating set D subset of V is an independent dominating set of graph G if the subgraph induced by D is isomorphic to an empty graph. The minimum cardinality of an independent dominating set, denoted by i(G), is called the independent domination number of graph G. It is known that for any tree i(T) <= n(T)+gamma(T)+l(T)/4. The extremal trees attaining the bound is characterized, which answers the problem posed in [A. Cabrera-Mart & iacute;nez, New bounds on the double domination number of trees, Discrete Appl. Math. 315 (2022) 97-103].
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Independent domination versus weighted independent domination
    Lozin, Vadim
    Malyshev, Dmitriy
    Mosca, Raffaele
    Zamaraev, Viktor
    INFORMATION PROCESSING LETTERS, 2020, 156
  • [42] Double domination and super domination in trees
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (04)
  • [43] SEMITOTAL DOMINATION VERSUS DOMINATION AND TOTAL DOMINATION IN TREES
    Wei, Zhuang
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (02) : 1249 - 1256
  • [44] Domination versus disjunctive domination in trees
    Henning, Michael A.
    Marcon, Sinclair A.
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 171 - 177
  • [45] Domination versus semipaired domination in trees
    Zhuang, Wei
    Hao, Guoliang
    QUAESTIONES MATHEMATICAE, 2020, 43 (11) : 1587 - 1600
  • [46] Strong Equality Between the 2-Rainbow Domination and Independent 2-Rainbow Domination Numbers in Trees
    J. Amjadi
    M. Falahat
    S. M. Sheikholeslami
    N. Jafari Rad
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 205 - 218
  • [47] Strong Equality Between the 2-Rainbow Domination and Independent 2-Rainbow Domination Numbers in Trees
    Amjadi, J.
    Falahat, M.
    Sheikholeslami, S. M.
    Rad, N. Jafari
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S205 - S218
  • [48] A new upper bound on the independent 2-rainbow domination number in trees
    Gholami, Elham
    Rad, Nader Jafari
    Tehranian, Abolfazl
    Rasouli, Hamid
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, : 261 - 270
  • [49] α-Domination perfect trees
    Dahme, F.
    Rautenbach, D.
    Volkmann, L.
    DISCRETE MATHEMATICS, 2008, 308 (15) : 3187 - 3198
  • [50] Rainbow domination on trees
    Chang, Gerard J.
    Wu, Jiaojiao
    Zhu, Xuding
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (01) : 8 - 12