Automated high-throughput organic crystal structure prediction via population-based sampling

被引:0
|
作者
Zhu, Qiang [1 ]
Hattori, Shinnosuke [2 ]
机构
[1] Univ North Carolina Charlotte, Dept Mech Engn & Engn Sci, Charlotte, NC 28223 USA
[2] Sony Grp Corp, Adv Res Lab, Res Platform, 4-14-1 Asahi Cho, Atsugi 2430014, Japan
来源
DIGITAL DISCOVERY | 2025年 / 4卷 / 01期
关键词
EVOLUTIONARY ALGORITHM; MOLECULAR-CRYSTALS; BLIND TEST; POLYMORPHISM; LETHALITY; PROGRAM; ENERGY;
D O I
10.1039/d4dd00264d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With advancements in computational molecular modeling and powerful structure search methods, it is now possible to systematically screen crystal structures for small organic molecules. In this context, we introduce the Python package High-Throughput Organic Crystal Structure Prediction (HTOCSP), which enables the prediction and screening of crystal packing for small organic molecules in an automated, high-throughput manner. Specifically, we describe the workflow, which encompasses molecular analysis, force field generation, and crystal generation and sampling, all within customized constraints based on user input. We demonstrate the application of HTOCSP by systematically screening organic crystals for 100 molecules using different sampling strategies and force field options. Furthermore, we analyze the benchmark results to understand the underlying factors that may influence the complexity of the crystal energy landscape. Finally, we discuss the current limitations of the package and potential future extensions.
引用
收藏
页码:120 / 134
页数:15
相关论文
共 50 条
  • [31] Accelerating Band Gap Prediction and High-Throughput Screening of Covalent Organic Frameworks Based on Transfer Learning
    Wei, Qinglin
    Qiu, Jiaxiang
    Wang, Ruirui
    Sun, Zhongti
    Xie, Yuee
    Chen, Yuanping
    Wan, Yangyang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025,
  • [32] Physical property prediction of epoxy-based thermoset polymers using automated high-throughput atomistic simulations
    Mustard, Thomas
    Sanders, Jeffrey
    Gavartin, Jacob
    Giesen, David
    Kwak, Shaun
    Hughes, Thomas
    Halls, Mathew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [33] Towards high-throughput exciton diffusion rate prediction in molecular organic semiconductors
    Weal, Geoffrey R.
    Sutton, Joshua J.
    Wechwithayakhlung, Chayanit
    Packwood, Daniel M.
    Hodgkiss, Justin M.
    Hume, Paul A.
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (24) : 8747 - 8758
  • [34] Automated high-throughput genome editing platform with an AI learning in situ prediction model
    Li, Siwei
    An, Jingjing
    Li, Yaqiu
    Zhu, Xiagu
    Zhao, Dongdong
    Wang, Lixian
    Sun, Yonghui
    Yang, Yuanzhao
    Bi, Changhao
    Zhang, Xueli
    Wang, Meng
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [35] High-Throughput Screening, Crystal Structure Prediction, and Carrier Mobility Calculations of Organic Molecular Semiconductors as Hole Transport Layer Materials in Perovskite Solar Cells
    Faruque, Md Omar
    Akter, Suchona
    Limbu, Dil K.
    Kilway, Kathleen V.
    Peng, Zhonghua
    Momeni, Mohammad R.
    CRYSTAL GROWTH & DESIGN, 2024, 24 (21) : 8950 - 8960
  • [36] A High-throughput Assay for the Prediction of Chemical Toxicity by Automated Phenotypic Profiling of Caenorhabditis elegans
    Gao, Shan
    Chen, Weiyang
    Zhang, Nan
    Xu, Chi
    Jing, Haiming
    Zhang, Wenjing
    Han, Gaochao
    Flavel, Matthew
    Jois, Markandeya
    Zeng, Yingxin
    Han, Jing-Dong J.
    Xian, Bo
    Li, Guojun
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (145):
  • [37] Automated high-throughput genome editing platform with an AI learning in situ prediction model
    Siwei Li
    Jingjing An
    Yaqiu Li
    Xiagu Zhu
    Dongdong Zhao
    Lixian Wang
    Yonghui Sun
    Yuanzhao Yang
    Changhao Bi
    Xueli Zhang
    Meng Wang
    Nature Communications, 13
  • [38] Construction and validation of an automated flow hydrogenation instrument for application in high-throughput organic chemistry
    Clapham, Bruce
    Wilson, Noel S.
    Michmerhuizen, Melissa J.
    Blanchard, David P.
    Dingle, David M.
    Nemcek, Thomas A.
    Pan, Jeffrey Y.
    Sauer, Daryl R.
    JOURNAL OF COMBINATORIAL CHEMISTRY, 2008, 10 (01): : 88 - 93
  • [39] ProkEvo: an automated, reproducible, and scalable framework for high-throughput bacterial population genomics analyses
    Pavlovikj, Natasha
    Gomes-Neto, Joao Carlos
    Deogun, Jitender S.
    Benson, Andrew K.
    PEERJ, 2021, 9
  • [40] High-throughput characterization methods for Ni-based superalloys and phase prediction via deep learning
    Qin, Zijun
    Li, Weifu
    Wang, Zi
    Pan, Junlong
    Wang, Zexin
    Li, Zihang
    Wang, Guowei
    Pan, Jun
    Liu, Feng
    Huang, Lan
    Tan, Liming
    Zhang, Lina
    Han, Hua
    Chen, Hong
    Jiang, Liang
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 21 : 1984 - 1997