Comparative Transcriptomic and Physiological Analyses Reveal Salt Tolerance Mechanisms of Beta vulgaris L

被引:0
|
作者
Li, Ningning [1 ]
Cheng, Jiamin [1 ]
Zhang, Zijian [1 ]
Sun, Yaqing [1 ]
Li, Zhi [1 ,2 ]
Mu, Yingnan [1 ,2 ]
Li, Guolong [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Agron, Hohhot 010019, Peoples R China
[2] Inner Mongolia Acad Agr & Anim Husb Sci, Inst Characterist Crops, Hohhot 010031, Peoples R China
关键词
Sugar beet; Salt tolerance; Salt sensitive; Physiological and molecular mechanism; NA+/H+ ANTIPORTER GENE; SUGAR-BEET; EXPRESSION; CLONING; STRESS; SOIL;
D O I
10.1007/s12355-025-01548-8
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil salinization is a significant factor that severely limits the production of high-quality sugar beet in China. However, little is known about the physiological and molecular regulatory mechanism of sugar beet in response to salt stress. In this study, salt-tolerant (AK3018) and salt-sensitive varieties (IM1162) were screened from 50 sugar beet cultivars, and transcriptome analysis identified 3281, 2614, 1930, and 4866 differentially expressed genes (DEGs) in the AK_L_C-VS-AK_L_S, AK_R_C-VS-AK_R_S, IM_L_C-VS-IM_L_S, and IM_R_C-VS-IM_R_S groups, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that DEGs responsive to salt stress were significantly enriched in multiple metabolic pathways, including proline and betalain biosynthesis, antioxidant enzyme activity, chlorophyll biosynthesis, and ion transmembrane transport. Additionally, the contents of proline, betaine, and soluble sugar and the activities of catalase and ascorbate peroxidase were significantly increased in sugar beet under salt stress. AK3018 had higher chlorophyll content, photosystem II activity, and more K+ and less Na+ in leaf than IM1162 under salt stress. These results indicate that sugar beet can accumulate osmoregulatory substances, maintain the reactive oxygen species balance, improve the photosynthetic system, and reconstruct ion homeostasis in response to salt stress. The results provide a deeper understanding of the physiological and molecular mechanisms of sugar beet in response to salt stress and provide a large number of candidate genes for molecular salt tolerance breeding in sugar beet.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Possible melatonin-induced salt stress tolerance pathway in Phaseolus vulgaris L. using transcriptomic and metabolomic analyses
    Xiaoxu Yang
    Dajun Liu
    Chang Liu
    Mengdi Li
    Zhishan Yan
    Yu Zhang
    Guojun Feng
    BMC Plant Biology, 24
  • [42] Possible melatonin-induced salt stress tolerance pathway in Phaseolus vulgaris L. using transcriptomic and metabolomic analyses
    Yang, Xiaoxu
    Liu, Dajun
    Liu, Chang
    Li, Mengdi
    Yan, Zhishan
    Zhang, Yu
    Feng, Guojun
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [43] Comparative Physiological and Transcriptomic Profiling Reveals the Characteristics of Tissue Tolerance Mechanisms in the japonica Rice Landrace Under Salt Stress
    Fauzia, Anisa Nazera
    Nampei, Mami
    Jiadkong, Kamonthip
    Shinta
    Sreewongchai, Tanee
    Ueda, Akihiro
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (10) : 3729 - 3742
  • [44] iTRAQ-Based Comparative Proteomic Analysis Provides Insights into Molecular Mechanisms of Salt Tolerance in Sugar Beet (Beta vulgaris L.)
    Wu, Guo-Qiang
    Wang, Jin-Long
    Feng, Rui-Jun
    Li, Shan-Jia
    Wang, Chun-Mei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (12)
  • [45] Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L
    Xiong, Jun-Lan
    Ma, Ni
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (23)
  • [46] Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue
    Xie, Yan
    Sun, Xiaoyan
    Feng, Qijia
    Luo, Hongji
    Wassie, Misganaw
    Amee, Maurice
    Amombo, Erick
    Chen, Liang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 142 : 342 - 350
  • [47] Comparative Physiological and Transcriptome Profiles Uncover Salt Tolerance Mechanisms in Alfalfa
    Li, Jiali
    Ma, Maosen
    Sun, Yanmei
    Lu, Ping
    Shi, Haifan
    Guo, Zhenfei
    Zhu, Haifeng
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [48] Integrated physiological, transcriptomic and metabolomic analyses reveal potential mechanisms of potato tuber dormancy release
    Liu, Hao
    Wang, Hongyang
    Feng, Youhong
    Yang, Yan
    Feng, Cai
    Li, Junhua
    Zaman, Qamar ur
    Kong, Yunxin
    Fahad, Shah
    Deng, Gang
    PHYSIOLOGIA PLANTARUM, 2025, 177 (01)
  • [49] Cytological, physiological, and transcriptomic analyses reveal potential regulatory mechanisms of curly leaves in Tartary buckwheat
    Ye, Xueling
    Wang, Pan
    Luo, Ranfei
    Gan, Zhen
    Yang, Peiyu
    Sun, Wenjun
    Fan, Yu
    Liu, Changying
    Wan, Yan
    Wu, Qi
    Wu, Xiaoyong
    Xiang, Dabing
    Yan, Tingting
    Kang, Jie
    Zou, Liang
    Zhao, Gang
    Wen, Jianguo
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2024, 228
  • [50] Comparative transcriptomic and hormone analyses reveal the molecular mechanisms regulating almond flowering stages
    Zhang, Dongdong
    Yu, Zhenfan
    He, Yawen
    Zeng, Bin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 221