Characterization of the dark signal of the Solar Orbiter/Metis detectors

被引:0
|
作者
Uslenghi, Michela C. [1 ]
Andretta, Vincenzo [2 ]
Luca, Teriaca [3 ]
Heerlein, Klaus [3 ]
Nicolini, Gianalfredo [4 ]
Pancrazzi, Maurizio [4 ]
Romoli, Marco [5 ]
Farina, Serena [1 ]
Abbo, Lucia [4 ]
Burtovoi, Aleksandr [6 ]
Casini, Chiara [4 ,7 ]
De Leo, Yara [3 ]
Frassati, Federica [4 ]
Jerse, Giovanna [8 ]
Landini, Federico [4 ]
Russano, Giuliana [2 ]
Sasso, Clementina [2 ]
Susino, Roberto [4 ]
机构
[1] INAF Ist Astrofis Spaziale & Fis Cosm Milano, Milan, Italy
[2] INAF Osservatorio Astron Capodimonte, Naples, Italy
[3] Max Planck Inst Sonnensyst Forsch, Gottingen, Germany
[4] INAF Osservatorio Astrofis Torino, Turin, Italy
[5] Univ Firenze, Florence, Italy
[6] INAF Osservatorio Astrofis Arcetri, Florence, Italy
[7] CNR Ist Foton & Nanotecnol, Milan, Italy
[8] INAF Osservatorio Astron Trieste, Trieste, Italy
来源
X-RAY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY XI | 2024年 / 13103卷
关键词
CMOS APS; Microchannel Plate; Ultraviolet; Coronagraph; Solar Orbiter; Dark current; Detector; Astronomy;
D O I
10.1117/12.3028609
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Metis, one of the instruments of the ESA mission Solar Orbiter (launched on February 10th, 2020, from Cape Canaveral), is a coronagraph with 2 channels, capable of performing broadband polarization imaging in the visible range (580-640 nm), and narrow-band imaging in UV (HI Lyman-alpha 121.6 nm). It is equipped with two detectors based on CMOS APS sensors: the visible channel includes a custom CMOS sensor with direct illumination, while the UV channel is provided with an intensified camera, based on a Star-1000 rad-hard CMOS APS coupled via a 2:1 fiber optic taper to a single-stage Microchannel Plate intensifier coated with an opaque KBr photocathode and sealed with an entrance MgF2 window. Dark subtraction is a crucial step in the data reduction pipeline, thus requiring careful in-flight monitoring and characterization of the dark signal. Since it is not possible to directly acquire dark images with the visible detector, as the door of the instrument is not light-tight, an ad hoc procedure has been designed to estimate the correction to be applied. In the case of the UV detector, however, it is possible to acquire dark frames by turning off the intensifier. Due to small fluctuations occurring on the bias signal level even on short timescales, an algorithm has been developed to correct the dark matrix frame by frame.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Alignment procedure for the Gregorian telescope of the Metis coronagraph for the Solar Orbiter ESA mission
    Da Deppo, Vania
    Mottini, Sergio
    Naletto, Giampiero
    Frassetto, Fabio
    Zuppella, Paola
    Sertsu, Mewael G.
    Romoli, Marco
    Fineschi, Silvano
    Antonucci, Ester
    Nicolini, Gianalfredo
    Nicolosi, Piergiorgio
    Spadaro, Daniele
    Andretta, Vincenzo
    Castronuovo, Marco
    Casti, Marta
    Capobianco, Gerardo
    Massone, Giuseppe
    Susino, Roberto
    Landini, Federico
    Pancrazzi, Maurizio
    Casini, Chiara
    Teriaca, Luca
    Uslenghi, Michela
    INTERNATIONAL CONFERENCE ON SPACE OPTICS-ICSO 2018, 2018, 11180
  • [32] Preliminary internal straylight analysis of the METIS instrument for the Solar Orbiter ESA mission
    Verroi, Enrico
    Da Deppo, Vania
    Naletto, Giampiero
    Fineschi, Silvano
    Antonucci, Ester
    SPACE TELESCOPES AND INSTRUMENTATION 2012: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2012, 8442
  • [33] First Solar Orbiter observation of a dark halo in the solar atmosphere
    Lezzi, S. M.
    Long, D. M.
    Andretta, V.
    Baker, D.
    Dolliou, A.
    Murabito, M.
    Parenti, S.
    Prado, N. Zambrana
    ASTRONOMY & ASTROPHYSICS, 2024, 690
  • [34] CMOS-based VUV detectors for the Solar Orbiter
    Pace, E
    Cidronali, A
    Coffa, S
    Uslenghi, D
    Libertino, S
    Focardi, M
    Collodi, G
    Fiorini, M
    Gori, L
    Pini, A
    De Sio, A
    Romoli, M
    SOLAR ENCOUNTER, 2001, 493 : 311 - 314
  • [35] First Solar Orbiter observation of a dark halo in the solar atmosphere
    Lezzi, S.M.
    Long, D.M.
    Andretta, V.
    Baker, D.
    Dolliou, A.
    Murabito, M.
    Parenti, S.
    Zambrana Prado, N.
    Astronomy and Astrophysics, 2024, 690
  • [36] Illumination system in visible-light with variable solar-divergence for the solar orbiter METIS coronagraph
    Tordi, M.
    Bartolozzi, M.
    Fineschi, S.
    Capobianco, G.
    Massone, G.
    Cesare, S.
    SOLAR PHYSICS AND SPACE WEATHER INSTRUMENTATION VI, 2015, 9604
  • [37] Calibration of Liquid Crystal Visible-light Polarimeter for Metis/Solar Orbiter Coronagraph
    Casti, M.
    Fineschi, S.
    Capobianco, G.
    Landini, F.
    Romoli, M.
    Antonucci, E.
    Andretta, V.
    Naletto, G.
    Nicolini, G.
    Spadaro, D.
    Alvarez-Herrero, A.
    Garcia-Parejo, P.
    Marmonti, M.
    SPACE TELESCOPES AND INSTRUMENTATION 2018: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2018, 10698
  • [38] Particle monitoring capability of the Solar Orbiter Metis coronagraph through the increasing phase of solar cycle 25
    Grimani, C.
    Andretta, V.
    Antonucci, E.
    Chioetto, P.
    Da Deppo, V.
    Fabi, M.
    Gissot, S.
    Jerse, G.
    Messerotti, M.
    Naletto, G.
    Pancrazzi, M.
    Persici, A.
    Plainaki, C.
    Romoli, M.
    Sabbatini, F.
    Spadaro, D.
    Stangalini, M.
    Telloni, D.
    Teriaca, L.
    Uslenghi, M.
    Villani, M.
    Abbo, L.
    Burtovoi, A.
    Frassati, F.
    Landini, F.
    Nicolini, G.
    Russano, G.
    Sasso, C.
    Susino, R.
    ASTRONOMY & ASTROPHYSICS, 2023, 677
  • [39] Improved stray light suppression performance for the Solar Orbiter/METIS inverted external occulter
    Landini, Federico
    Romoli, Marco
    Capobianco, Gerardo
    Vives, Sebastien
    Fineschi, Silvano
    Massone, Giuseppe
    Loreggia, Davide
    Turchi, Enzo
    Guillon, Christophe
    Escolle, Clement
    Pancrazzi, Maurizio
    Focardi, Mauro
    SOLAR PHYSICS AND SPACE WEATHER INSTRUMENTATION V, 2013, 8862
  • [40] Optical design of the multi-wavelength imaging coronagraph Metis for the solar orbiter mission
    Fineschi, S.
    Naletto, G.
    Romoli, M.
    Deppo, V
    Antonucci, E.
    Moses, D.
    Malvezzi, A. M.
    Nicolini, G.
    Spadaro, D.
    Teriaca, L.
    Andretta, V
    Capobianco, G.
    Crescenzio, G.
    Focardi, M.
    Frassetto, F.
    Landini, F.
    Massone, G.
    Melich, R.
    Nicolosi, P.
    Pancrazzi, M.
    Pelizzo, M. G.
    Poletto, L.
    Schuhle, U.
    Uslenghi, M.
    Vives, S.
    Solanki, S. K.
    Heinzel, P.
    Berlicki, A.
    Cesare, S.
    Morea, D.
    Mottini, S.
    Sandri, P.
    Alvarez-Herrero, A.
    Castronuovo, M.
    EXPERIMENTAL ASTRONOMY, 2020, 49 (03) : 239 - 263