Microwave-assisted pyrolysis of biomass for efficient H2-rich syngas production promoted by calcium oxide

被引:1
|
作者
Zeng, Chen [1 ]
Jiang, Zhiwei [1 ]
Zeng, Yongjian [1 ]
Zhang, Suyu [1 ]
Luque, Rafael [2 ,3 ]
Yan, Kai [1 ]
机构
[1] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangdong Prov Key Lab Environm Pollut Control & R, Guangzhou 510275, Peoples R China
[2] Peoples Friendship Univ Russia RUDN Univ, 6 Miklukho Maklaya Str, Moscow 117198, Russia
[3] Univ ECOTEC, Km 13-5 Samborondon, EC-092302 Samborondon, Ecuador
基金
中国国家自然科学基金;
关键词
Biomass; Microwave-assisted pyrolysis; Pearl-like calcium oxide; H2-rich syngas; CO2; absorption; GAS SHIFT REACTION; CELLULOSE; GASIFICATION; TEMPERATURE;
D O I
10.1016/j.cej.2025.159905
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
H-2-rich syngas production via microwave-assisted pyrolysis (MAP) of lignocellulosic biomass has recently gained significant attention in biorefineries. Herein, a novel pearl-like calcium oxide (P-CaO) was developed to investigate the dual roles of CaO in H-2 enhancement and CO2 absorption during MAP of lignocellulosic biomass, dedicated to achieving high production of H-2-rich syngas. Utilizing a self-constructed MAP system, the different catalytic performance between P-CaO and other metal oxides were examined, revealing that our P-CaO produced the highest H-2 yield (257 NmL/g(corn stover), 7.6 times higher than no-catalyst group and 2.2 times higher than commercial CaO group), and lowest CO2 production (44 NmL/g(feedstock)), with syngas purity exceeding 72 vol% at 600 degrees C. This increase in H-2-rich syngas production demonstrated universal applicability across other biomass feedstocks. Finally, the study delved into the microstructural changes and phase transition mechanisms of P-CaO, shedding insights into gas formation pathways. The P-CaO nanoparticles, with abundant alkaline sites, excellent adsorption capacity and large specific surface area due to aggregate, facilitate the secondary cracking of organic intermediates like phenols, thus promoting the production of H-2, while CO2 adsorption derives a favorable shift in the water-gas shift equilibrium. These findings are expected to offer critical insights and serve as a reference for the development of efficient catalysts in the next-generation hydrogen industry.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Development of a comprehensive simulation model for H2-rich syngas production by air-steam gasification of biomass
    Fu, Leijie
    Cao, Yan
    Bai, Yu
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (14) : 8069 - 8075
  • [22] In situ generation of Ni metal nanoparticles as catalyst for H2-rich syngas production from biomass gasification
    Richardson, Yohan
    Blin, Joel
    Volle, Ghislaine
    Motuzas, Julius
    Julbe, Anne
    APPLIED CATALYSIS A-GENERAL, 2010, 382 (02) : 220 - 230
  • [23] Catalytic pyrolysis of pine needle biomass over Fe-Co-K catalyst for H2-rich syngas production: Influence of catalyst preparation
    Deng, Jin
    Zhou, Yujie
    Zhao, Yan
    Meng, Lingshuai
    Qin, Tao
    Chen, Xin
    Li, Kuo
    Yuan, Shenfu
    ENERGY, 2022, 244
  • [24] Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes
    Fernandez, Y.
    Menendez, J. A.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2011, 91 (02) : 316 - 322
  • [25] Catalytic production of H2-rich syngas from cellulose pyrolysis under nickel metal fog with molten carbonates
    Jia, Xiying
    Wei, Yi
    Si, Renhao
    Wang, Cheng
    Guo, Pengzi
    Ji, Jianbing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 72 : 991 - 1000
  • [26] Evaluating tar production via the release of volatile matters for H2-rich syngas production
    Zeng, Jimin
    Yuan, Jun
    Hu, Jiawei
    Zhang, Shuai
    Qiu, Yu
    Tippayawong, Nakorn
    Zeng, Dewang
    Xiao, Rui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (06) : 3712 - 3720
  • [27] Microwave pyrolysis-engineered MOFs derivatives for efficient preferential CO oxidation in H2-rich stream
    Wang, Lei
    Peng, Huan
    Xie, Wen-quan
    Shi, Shun-li
    Yuan, Ming-wei
    Zhao, Dan
    Wang, Shu-hua
    Chen, Chao
    CHEMICAL ENGINEERING SCIENCE, 2022, 256
  • [28] H2-rich syngas production from gasification of cannabis waste in a downdraft gasifier
    Lopes, Francisco Wendell Bezerra
    Andrade, Maria Rosiane de Almeida
    DE Barros Neto, Eduardo Lins
    Lavoie, Jean-Michel
    DE Vasconcelos, Bruna Rego
    BIOMASS & BIOENERGY, 2024, 190
  • [29] Assessment of sewage sludge gasification in supercritical water for H2-rich syngas production
    Hantoko, Dwi
    Antoni
    Kanchanatip, Ekkachai
    Yan, Mi
    Weng, Zhouchao
    Gao, Zengliang
    Zhong, Yingjie
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2019, 131 : 63 - 72
  • [30] High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni-Fe@Nanofibers/Porous carbon catalyst
    Zhang, Shuping
    Zhu, Shuguang
    Zhang, Houlei
    Liu, Xinzhi
    Xiong, Yuanquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (48) : 26193 - 26203