Octagonal Photonic Crystal Fiber Magnetic Field Sensor Based on Surface Plasmon Resonance Effect

被引:0
|
作者
Li, Mingliang [1 ,2 ]
Cao, Ying [1 ]
Li, Jianhua [3 ,4 ]
Li, Zonglin [1 ]
Zhang, Ru [1 ]
Meng, Fanchao [1 ]
机构
[1] Hebei GEO Univ, Informat Engn Coll, Shijiazhuang 050031, Hebei, Peoples R China
[2] Intelligent Sensor Network Engn Res Ctr Hebei Prov, Shijiazhuang, Peoples R China
[3] Minist Nat Resources, Key Lab Geophys Electromagnet Probing Technol, Langfang 065000, Hebei, Peoples R China
[4] Chinese Acad Geol Sci, Inst Geophys & Geochem Explorat, Langfang, Hebei, Peoples R China
关键词
Magnetic field sensor; Photonic crystal fiber; Surface plasmon resonance; Finite element method; CHEMICAL SENSOR; DESIGN;
D O I
10.1007/s11468-024-02619-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y-direction. The external magnetic field intensity can be determined by observing the change in the confinement loss spectra caused by the effect of the external magnetic field on the refractive index of the magnetic fluid. A finite element method is used to simulate the effects of structural parameters such as air hole diameter, stomatal spacing, and gold coating thickness on the performance of the fiber optic magnetic field sensor. The sensitivity of the proposed optical fiber magnetic field sensor is 757.1 pm/Oe, a FOM value of 2.16 Oe-1, and an AS value of 1.43 x 10-3 Oe-1, and the detection range is 50-200 Oe. The OPCF magnetic field sensor enables the development of lightweight and high-precision electromagnetic detection equipment due to the fact that OPCF magnetic field sensors do not require excessive modification of PCF, have less damage, are simple in structure, and have low production costs. It will improve the efficiency and quality of data collection in electromagnetic geological exploration and accelerate the transformation and upgradation of intelligent and green geological exploration.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Triple Analyte Detection with Photonic Crystal Fiber based Surface Plasmon Resonance Sensor
    Yasli, Ahmet
    Ademgil, Huseyin
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [22] A novel birefringent photonic crystal fiber surface plasmon resonance sensor
    Liu, Meitong
    Guo, Yubin
    Sun, Tiegang
    Song, Zhilei
    SIXTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2018), 2018, 10827
  • [23] Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires
    Fu, Xiangyong
    Lu, Ying
    Huang, Xiaohui
    Hao, Congjing
    Wu, Baoqun
    Yao, Jianquan
    OPTICA APPLICATA, 2011, 41 (04) : 941 - 951
  • [24] A surface plasmon resonance sensor based on a multi-core photonic crystal fiber
    Zhang P.-P.
    Yao J.-Q.
    Cui H.-X.
    Lu Y.
    Optoelectronics Letters, 2013, 9 (5) : 342 - 345
  • [25] A PHOTONIC CRYSTAL FIBER BASED ON SURFACE PLASMON RESONANCE TEMPERATURE SENSOR WITH LIQUID CORE
    Bing, P. B.
    Li, Z. Y.
    Yao, J. Q.
    Lu, Y.
    Di, Z. G.
    MODERN PHYSICS LETTERS B, 2012, 26 (13):
  • [26] Plasmonic Material Coated Photonic Crystal Fiber Sensor Based on Surface Plasmon Resonance
    Sarker, Sanchita
    2021 IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE), 2022, : 125 - 128
  • [27] Surface plasmon resonance based photonic crystal fiber sensor for bio samples detection
    Meshginqalam, Bahar
    Barvestani, Jamal
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (07):
  • [28] Surface Plasmon Resonance Refractive Index Sensor Based on Active Photonic Crystal Fiber
    Hao, C. J.
    Lu, Y.
    Wang, M. T.
    Wu, B. Q.
    Duan, L. C.
    Yao, J. Q.
    IEEE PHOTONICS JOURNAL, 2013, 5 (06):
  • [29] High-sensitivity photonic crystal fiber sensor based on surface plasmon resonance
    Feng, Huanting
    Gao, Jiachen
    Ming, Xianbing
    OPTOELECTRONICS LETTERS, 2024, 20 (07) : 393 - 399
  • [30] Photonic Crystal Fiber Biosensors Based on Surface Plasmon Resonance
    Fan Yuyan
    Shi Weihua
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (21)