Octagonal Photonic Crystal Fiber Magnetic Field Sensor Based on Surface Plasmon Resonance Effect

被引:0
|
作者
Li, Mingliang [1 ,2 ]
Cao, Ying [1 ]
Li, Jianhua [3 ,4 ]
Li, Zonglin [1 ]
Zhang, Ru [1 ]
Meng, Fanchao [1 ]
机构
[1] Hebei GEO Univ, Informat Engn Coll, Shijiazhuang 050031, Hebei, Peoples R China
[2] Intelligent Sensor Network Engn Res Ctr Hebei Prov, Shijiazhuang, Peoples R China
[3] Minist Nat Resources, Key Lab Geophys Electromagnet Probing Technol, Langfang 065000, Hebei, Peoples R China
[4] Chinese Acad Geol Sci, Inst Geophys & Geochem Explorat, Langfang, Hebei, Peoples R China
关键词
Magnetic field sensor; Photonic crystal fiber; Surface plasmon resonance; Finite element method; CHEMICAL SENSOR; DESIGN;
D O I
10.1007/s11468-024-02619-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper describes an octagonal photonic crystal fiber (OPCF) magnetic field sensor based on the surface plasmon resonance effect. The magnetic fluid is filled into the first layer of air holes of the OPCF, and the Au is coated into the air hole located in the y-direction. The external magnetic field intensity can be determined by observing the change in the confinement loss spectra caused by the effect of the external magnetic field on the refractive index of the magnetic fluid. A finite element method is used to simulate the effects of structural parameters such as air hole diameter, stomatal spacing, and gold coating thickness on the performance of the fiber optic magnetic field sensor. The sensitivity of the proposed optical fiber magnetic field sensor is 757.1 pm/Oe, a FOM value of 2.16 Oe-1, and an AS value of 1.43 x 10-3 Oe-1, and the detection range is 50-200 Oe. The OPCF magnetic field sensor enables the development of lightweight and high-precision electromagnetic detection equipment due to the fact that OPCF magnetic field sensors do not require excessive modification of PCF, have less damage, are simple in structure, and have low production costs. It will improve the efficiency and quality of data collection in electromagnetic geological exploration and accelerate the transformation and upgradation of intelligent and green geological exploration.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Temperature and Magnetic Field Sensor Based on Photonic Crystal Fiber and Surface Plasmon Resonance
    Li J.
    Pei L.
    Wang J.
    Wu L.
    Ning T.
    Zheng J.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2019, 46 (02):
  • [2] Temperature and Magnetic Field Sensor Based on Photonic Crystal Fiber and Surface Plasmon Resonance
    Li Jiahuan
    Pei Li
    Wang Jianshuai
    Wu Liangying
    Ning Tigang
    Zheng Jingjing
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (02):
  • [3] A Highly Magnetic Field Sensitive Photonic Crystal Fiber Based on Surface Plasmon Resonance
    Huang, Huimin
    Zhang, Zhenrong
    Yu, Yang
    Zhou, Lingjun
    Tao, Yuyu
    Li, Guofeng
    Yang, Junbo
    SENSORS, 2020, 20 (18) : 1 - 15
  • [4] Multichannel photonic crystal fiber surface plasmon resonance based sensor
    Azzam, Shaimaa I.
    Hameed, Mohamed Farhat O.
    Shehata, Rania Eid A.
    Heikal, A. M.
    Obayya, S. S. A.
    OPTICAL AND QUANTUM ELECTRONICS, 2016, 48 (02) : 1 - 11
  • [5] A surface plasmon resonance sensor based on a multicore photonic crystal fiber
    张培培
    姚建铨
    崔海霞
    陆颖
    OptoelectronicsLetters, 2013, 9 (05) : 342 - 345
  • [6] Multichannel photonic crystal fiber surface plasmon resonance based sensor
    Shaimaa I. Azzam
    Mohamed Farhat O. Hameed
    Rania Eid A. Shehata
    A. M. Heikal
    S. S. A. Obayya
    Optical and Quantum Electronics, 2016, 48
  • [7] Eccentric Core Photonic Crystal Fiber Magnetic Field Sensor Based on Surface Plasmon Resonance with Extremely High Linearity
    Luo, Xingdi
    Lv, Jingwei
    Liu, Wei
    Mi, Chao
    Wang, Jianxin
    Lu, Xili
    Yang, Lin
    Liu, Qiang
    Chu, Paul K.
    Liu, Chao
    PLASMONICS, 2024,
  • [8] An ultrahighly sensitive photonic crystal fiber based surface plasmon resonance sensor
    Fu, Yongbo
    Liu, Min
    Shum, Ping
    Chu, Lihua
    OPTIK, 2020, 212
  • [9] Photonic Crystal Fiber Pollution Sensor Based on the Surface Plasmon Resonance Technology
    Abbas, Fatima Fadhil
    Ahmed, Soudad S.
    BAGHDAD SCIENCE JOURNAL, 2023, 20 (02) : 616 - 621
  • [10] Surface plasmon resonance sensor based on a novel grapefruit photonic crystal fiber
    Zhang Peipei
    Yao Jianquan
    Jing Lei
    Cui Haixia
    Lu Ying
    22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3, 2012, 8421