A predictive language model for SARS-CoV-2 evolution

被引:0
|
作者
Ma, Enhao [1 ]
Guo, Xuan [1 ,2 ]
Hu, Mingda [3 ]
Wang, Penghua [4 ]
Wang, Xin [3 ]
Wei, Congwen [3 ]
Cheng, Gong [1 ,2 ]
机构
[1] Tsinghua Univ, Sch Basic Med Sci, 30 Shuangqing Rd, Beijing 100084, Peoples R China
[2] Inst Infect Dis, Shenzhen Bay Lab, Guangqiao Rd, Shenzhen 518000, Guangdong, Peoples R China
[3] Beijing Inst Biotechnol, 20 Dongdajie, Beijing 100071, Peoples R China
[4] Univ Connecticut Hlth Ctr, Sch Med, Dept Immunol, Farmington, CT 06030 USA
基金
中国国家自然科学基金;
关键词
EVASION;
D O I
10.1038/s41392-024-02066-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Modeling and predicting mutations are critical for COVID-19 and similar pandemic preparedness. However, existing predictive models have yet to integrate the regularity and randomness of viral mutations with minimal data requirements. Here, we develop a non-demanding language model utilizing both regularity and randomness to predict candidate SARS-CoV-2 variants and mutations that might prevail. We constructed the "grammatical frameworks" of the available S1 sequences for dimension reduction and semantic representation to grasp the model's latent regularity. The mutational profile, defined as the frequency of mutations, was introduced into the model to incorporate randomness. With this model, we successfully identified and validated several variants with significantly enhanced viral infectivity and immune evasion by wet-lab experiments. By inputting the sequence data from three different time points, we detected circulating strains or vital mutations for XBB.1.16, EG.5, JN.1, and BA.2.86 strains before their emergence. In addition, our results also predicted the previously unknown variants that may cause future epidemics. With both the data validation and experiment evidence, our study represents a fast-responding, concise, and promising language model, potentially generalizable to other viral pathogens, to forecast viral evolution and detect crucial hot mutation spots, thus warning the emerging variants that might raise public health concern.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Monitoring and assessment of SARS-CoV-2 evolution
    Miasoiedov, V. V.
    Nartov, P., V
    Yurko, K., V
    Lesovoy, V. M.
    Kapustnyk, V. A.
    Bondarenko, A., V
    Cherniak, M. Ye
    Yakushchenko, V. A.
    Kucheriavchenko, V. V.
    Maslova, V. S.
    Bondarenko, V
    ZAPOROZHYE MEDICAL JOURNAL, 2022, 24 (01) : 109 - 114
  • [22] Evolution of antibody immunity to SARS-CoV-2
    Gaebler, Christian
    Wang, Zijun
    Lorenzi, Julio C. C.
    Muecksch, Frauke
    Finkin, Shlomo
    Tokuyama, Minami
    Cho, Alice
    Jankovic, Mila
    Schaefer-Babajew, Dennis
    Oliveira, Thiago Y.
    Cipolla, Melissa
    Viant, Charlotte
    Barnes, Christopher O.
    Bram, Yaron
    Breton, Gaelle
    Hagglof, Thomas
    Mendoza, Pilar
    Hurley, Arlene
    Turroja, Martina
    Gordon, Kristie
    Millard, Katrina G.
    Ramos, Victor
    Schmidt, Fabian
    Weisblum, Yiska
    Jha, Divya
    Tankelevich, Michael
    Martinez-Delgado, Gustavo
    Yee, Jim
    Patel, Roshni
    Dizon, Juan
    Unson-O'Brien, Cecille
    Shimeliovich, Irina
    Robbiani, Davide F.
    Zhao, Zhen
    Gazumyan, Anna
    Schwartz, Robert E.
    Hatziioannou, Theodora
    Bjorkman, Pamela J.
    Mehandru, Saurabh
    Bieniasz, Paul D.
    Caskey, Marina
    Nussenzweig, Michel C.
    NATURE, 2021, 591 (7851) : 639 - +
  • [23] Cytosine drives evolution of SARS-CoV-2
    Danchin, Antoine
    Marliere, Philippe
    ENVIRONMENTAL MICROBIOLOGY, 2020, 22 (06) : 1977 - 1985
  • [24] The Evolution and Biology of SARS-CoV-2 Variants
    Telenti, Amalio
    Hodcroft, Emma B.
    Robertson, David L.
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2022, 12 (05):
  • [25] On the origin and continuing evolution of SARS-CoV-2
    Xiaolu Tang
    Changcheng Wu
    Xiang Li
    Yuhe Song
    Xinmin Yao
    Xinkai Wu
    Yuange Duan
    Hong Zhang
    Yirong Wang
    Zhaohui Qian
    Jie Cui
    Jian Lu
    National Science Review, 2020, 7 (06) : 1012 - 1023
  • [26] Evolution of the SARS-CoV-2 Mutational Spectrum
    Bloom, Jesse D.
    Beichman, Annabel C.
    Neher, Richard A.
    Harris, Kelley
    MOLECULAR BIOLOGY AND EVOLUTION, 2023, 40 (04)
  • [27] SARS-CoV-2 vaccines: evolution and escape
    Rivero, Ricardo H.
    Gonzalez, Marco
    Mattar, Salim
    REVISTA MVZ CORDOBA, 2021, 26 (03)
  • [28] SARS-CoV-2 evolution in the Omicron era
    Roemer, Cornelius
    Sheward, Daniel J.
    Hisner, Ryan
    Gueli, Federico
    Sakaguchi, Hitoshi
    Frohberg, Nicholas
    Schoenmakers, Josette
    Sato, Kenta
    O'Toole, Aine
    Rambaut, Andrew
    Pybus, Oliver G.
    Ruis, Christopher
    Murrell, Ben
    Peacock, Thomas P.
    NATURE MICROBIOLOGY, 2023, 8 (11) : 1952 - 1959
  • [29] An epidemiological model for SARS-CoV-2
    Monteiro, L. H. A.
    ECOLOGICAL COMPLEXITY, 2020, 43
  • [30] A descriptive and validation study of a predictive model of severity of SARS-COV-2 infection
    Villena-Ortiz, Yolanda
    Giralt, Marina
    Castellote-Belles, Laura
    Lopez-Martinez, Rosa M.
    Martinez-Sanchez, Luisa
    Garcia-Fernandez, Alba Estela
    Ferrer-Costa, Roser
    Rodriguez-Frias, Francisco
    Casis, Ernesto
    ADVANCES IN LABORATORY MEDICINE-AVANCES EN MEDICINA DE LABORATORIO, 2021, 2 (03): : 390 - 398