ERX: A Fast Real-Time Anomaly Detection Algorithm for Hyperspectral Line Scanning

被引:0
|
作者
Garske, Samuel [1 ,2 ]
Evans, Bradley [3 ]
Artlett, Christopher [4 ]
Wong, K. C. [1 ,2 ]
机构
[1] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[2] Univ Sydney, Australian Res Council ARC, UAVs & Their Applicat CUAVA, Training Ctr CubeSats, Sydney, NSW 2006, Australia
[3] Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2350, Australia
[4] Def Sci & Technol Grp, Eveleigh, NSW 2015, Australia
基金
澳大利亚研究理事会;
关键词
Anomaly detection; hyperspectral; line scanning; real time; unsupervised learning; KERNEL RX-ALGORITHM; COLLABORATIVE REPRESENTATION; IMAGING SPECTROSCOPY;
D O I
10.1109/TGRS.2025.3532225
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Detecting unexpected objects (anomalies) in real time has great potential for monitoring, managing, and protecting the environment. Hyperspectral line-scan cameras are a low-cost solution that enhances confidence in anomaly detection over red-green-blue (RGB) and multispectral imagery. However, existing line-scan algorithms are too slow when using small computers (e.g., those onboard a drone or small satellite), do not adapt to changing scenery, or lack robustness against geometric distortions. This article introduces the exponentially moving Reed-Xiaoli (ERX) algorithm to address these issues, and compares it with four existing Reed-Xiaoli (RX)-based anomaly detection methods for hyperspectral line scanning. Three large and more complex datasets are also introduced to better assess the practical challenges when using line-scan cameras (two hyperspectral and one multispectral). ERX is evaluated using a Jetson Xavier NX edge computing module (six-core CPU, 8-GB RAM, and 20-W power draw), achieving the best combination of speed and detection performance. ERX was nine times faster than the next-best algorithm on the dataset with the highest number of bands (108 bands), with an average speed of 561 lines per second on the Jetson. It achieved a 29.3% area under each receiver operating characteristic (ROC) curve (AUC) improvement over the next-best algorithm on the most challenging dataset, while showing greater adaptability through consistently high AUC scores regardless of the camera's starting location. ERX performed robustly across all datasets, achieving an AUC of 0.941 on a drone-collected hyperspectral line scan dataset without geometric corrections (a 16.9% improvement over existing algorithms). This work enables the future research on the detection of anomalous objects in real time, adaptive and automatic threshold selection, and real-time field tests. The datasets and the Python code are openly available at: https://github.com/WiseGamgee/HyperAD, promoting accessibility and future work.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Kernel Subspace-based Real-time Anomaly Detection for Hyperspectral Imagery
    Zhao, Chunhui
    You, Wei
    Wang, Jia
    Wong, Yulei
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1865 - 1868
  • [23] Fast real-time onboard processing of hyperspectral imagery for detection and classification
    Du, Qian
    Nekovei, Reza
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2009, 4 (03) : 273 - 286
  • [24] Fast real-time onboard processing of hyperspectral imagery for detection and classification
    Qian Du
    Reza Nekovei
    Journal of Real-Time Image Processing, 2009, 4 : 273 - 286
  • [25] Real-time Detection and Recognition Algorithm for Hyperspectral Small Targets on Ocean
    Chen Jiaxin
    Zhang Geng
    Hu Bingliang
    OPTICAL SENSING AND IMAGING TECHNOLOGIES AND APPLICATIONS, 2018, 10846
  • [26] Real-time hyperspectral detection and cuing
    Stellman, CM
    Hazel, GG
    Bucholtz, F
    Michalowicz, JV
    Stocker, A
    Schaaf, W
    OPTICAL ENGINEERING, 2000, 39 (07) : 1928 - 1935
  • [27] A NOVEL IMPLEMENTATION OF A HYPERSPECTRAL ANOMALY DETECTION ALGORITHM FOR REAL TIME APPLICATIONS WITH PUSHBROOM SENSORS
    Horstrand, Pablo
    Lopez, Sebastian
    Fco Lopez, Jose
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [28] An ARIMA Based Real-time Monitoring and Warning Algorithm for the Anomaly Detection
    Zeng, Jia
    Zhang, Lei
    Shi, Gaotao
    Liu, Tiegen
    Liu, Kun
    2017 IEEE 23RD INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2017, : 469 - 476
  • [29] Dynamically Real-time Anomaly Detection Algorithm with Immune Negative Selection
    Peng, Lingxi
    Chen, Wenbin
    Xie, Dongqing
    Gao, Ying
    Liang, Chunlin
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (03): : 1157 - 1163
  • [30] REAL-TIME HYPERSPECTRAL ANOMALY DETECTION USING COLLABORATIVE SUPERPIXEL REPRESENTATION WITH BOUNDARY REFINEMENT
    Lin, Jhao-Ting
    Lin, Chia-Hsiang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1752 - 1755