Nano-Scale Video Imaging of Motility Machinery by High-Speed Atomic Force Microscopy

被引:0
|
作者
Mcarthur, Steven John [1 ]
Umeda, Kenichi [1 ,2 ]
Kodera, Noriyuki [1 ]
机构
[1] Kanazawa Univ, WPI Nano Life Sci Inst WPI NanoLSI, Kanazawa 9201192, Japan
[2] Japan & Japan Sci & Technol Agcy JST, Precursory Res Embryon Sci & Technol PRESTO, 4-1-8 Honcho, Kawaguchi 3320012, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
motility; atomic force microscopy; high-speed AFM; cytoskeleton; molecular motor; bio-imaging; protein dynamics; supramolecular complex; single-molecule biophysics; CYCLASE-ASSOCIATED PROTEIN; ACTIN-FILAMENT DYNAMICS; FLAGELLAR HOOK-LENGTH; F-ACTIN; COFILIN; MYOSIN; MECHANISM; MUSCLE; FLHF; AFM;
D O I
10.3390/biom15020257
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Motility is a vital aspect of many forms of life, with a wide range of highly conserved as well as highly unique systems adapted to the needs of various organisms and environments. While many motility systems are well studied using structural techniques like X-ray crystallography and electron microscopy, as well as fluorescence microscopy methodologies, it is difficult to directly determine the relationship between the shape and movement of a motility system due to a notable gap in spatiotemporal resolution. Bridging this gap as well as understanding the dynamic molecular movements that underpin motility mechanisms has been challenging. The advent of high-speed atomic force microscopy (HS-AFM) has provided a new window into understanding these nano-scale machines and the dynamic processes underlying motility. In this review, we highlight some of the advances in this field, ranging from reconstituted systems and purified higher-order supramolecular complexes to live cells, in both prokaryotic and eukaryotic contexts.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] On Amplitude Estimation for High-Speed Atomic Force Microscopy
    Ragazzon, Michael R. P.
    Gravdahl, J. Tommy
    Fleming, Andrew J.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 2635 - 2642
  • [32] Biological physics by high-speed atomic force microscopy
    Casuso, Ignacio
    Redondo-Morata, Lorena
    Rico, Felix
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2186):
  • [33] High-speed atomic force microscopy for materials science
    Payton, O. D.
    Picco, L.
    Scott, T. B.
    INTERNATIONAL MATERIALS REVIEWS, 2016, 61 (08) : 473 - 494
  • [35] On recent developments for high-speed atomic force microscopy
    Schitter, G
    Fantner, GE
    Kindt, JH
    Thurner, PJ
    Hansma, PK
    2005 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1 AND 2, 2005, : 261 - 264
  • [36] High-Speed Atomic Force Microscopy of SMC Proteins
    Ryu, Je-Kyung
    Katan, Allard
    Minamino, Masashi
    Bouchoux, Celine
    Bisht, Shveta
    Eeftens, Jorine
    Hearing, Christian
    Uhlmann, Frank
    Dekker, Cees
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 564A - 564A
  • [37] Control techniques in high-speed atomic force microscopy
    Ando, Toshio
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 3194 - 3200
  • [38] A mechanical microscope: High-speed atomic force microscopy
    Humphris, ADL
    Miles, MJ
    Hobbs, JK
    APPLIED PHYSICS LETTERS, 2005, 86 (03) : 1 - 3
  • [39] Automated parallel high-speed atomic force microscopy
    Minne, SC
    Yaralioglu, G
    Manalis, SR
    Adams, JD
    Zesch, J
    Atalar, A
    Quate, CF
    APPLIED PHYSICS LETTERS, 1998, 72 (18) : 2340 - 2342
  • [40] High-speed atomic force microscopy coming of age
    Ando, Toshio
    NANOTECHNOLOGY, 2012, 23 (06)