Enhancing the utility of polygenic scores in Alzheimer's disease through systematic curation and annotation

被引:0
|
作者
Mwesigwa, Savannah [1 ]
Dai, Yulin [1 ]
Enduru, Nitesh [1 ]
Zhao, Zhongming [1 ,2 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, McWilliams Sch Biomed Informat, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Faillace Dept Psychiat & Behav Sci, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
Alzheimer's disease; genetic variant; PGS catalog; polygenic scores; rank aggregation; RISK; MODELS;
D O I
10.3389/fgene.2025.1507395
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction Polygenic Scores (PGSs) assess cumulative genetic risk variants that contribute to the association with complex diseases like Alzheimer's Disease (AD). The PGS Catalog is a valuable repository of PGSs of various complex diseases, but it lacks standardized annotations and harmonization, making the information difficult to integrate for a specific disease.Methods In this study, we curated 44 PGS datasets for AD from the PGS Catalog, categorized them into five methodological groups, and annotated 813,257 variants to nearby genes. We aligned the scores based on the "GWAS significant variants" (GWAS-SV) method with the GWAS Catalog and flagged redundant files and those with a "limited scope" due to insufficient external GWAS support. Using rank aggregation (RA), we prioritized consistently important variants and provided an R package, "PgsRankRnnotatR," to automate this process.Results Of the six RA methods evaluated, "Dowdall" method was the most robust. Our refined dataset, enhanced by multiple RA options, is a valuable resource for AD researchers selecting PGSs or exploring AD-related genetic variants.Discussion Our approach offers a framework for curating, harmonizing, and prioritizing PGS datasets, improving their usability for AD research. By integrating multiple RA methods and automating the process, we provide a flexible tool that enhances PGS selection and genetic variant exploration. This framework can be extended to other complex diseases or traits, facilitating broader applications in genetic risk assessment.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Improving the Utility of Polygenic Risk Scores as a Biomarker for Alzheimer's Disease
    Vlachakis, Dimitrios
    Papakonstantinou, Eleni
    Sagar, Ram
    Bacopoulou, Flora
    Exarchos, Themis
    Kourouthanassis, Panos
    Karyotis, Vasileios
    Vlamos, Panayiotis
    Lyketsos, Constantine
    Avramopoulos, Dimitrios
    Mahairaki, Vasiliki
    CELLS, 2021, 10 (07)
  • [2] From Polygenic Scores to Precision Medicine in Alzheimer's Disease: A Systematic Review
    Harrison, Judith R.
    Mistry, Sumit
    Muskett, Natalie
    Escott-Price, Valentina
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 74 (04) : 1271 - 1283
  • [3] Polygenic Risk Scores in Familial Alzheimer's Disease
    Tosto, Giuseppe
    Bird, Thomas D.
    Bennet, David A.
    Boeve, Bradley F.
    Brickman, Adam M.
    Cruchaga, Carlos
    Faber, Kelley
    Foroud, Tatiana M.
    Farlow, Martin
    Goate, Alison M.
    Graff-Radford, Neil R.
    Lantigua, Rafael
    Manly, Jennifer
    Ottman, Ruth
    Rosenberg, Roger
    Schaid, Daniel J.
    Schupf, Nicole
    Stern, Yaakov
    Sweet, Robert A.
    Mayeux, Richard
    ANNALS OF NEUROLOGY, 2016, 80 : S182 - S182
  • [4] Interpreting Alzheimer disease polygenic scores
    Tan, Chin Hong
    Desikan, Rahul S.
    ANNALS OF NEUROLOGY, 2018, 83 (03) : 443 - 445
  • [5] Polygenic risk and hazard scores for Alzheimer's disease prediction
    Leonenko, Ganna
    Sims, Rebecca
    Shoai, Maryam
    Frizzati, Aura
    Bossu, Paola
    Spalletta, Gianfranco
    Fox, Nick C.
    Williams, Julie
    Hardy, John
    Escott-Price, Valentina
    Tsolaki, Magda
    Craig, David
    Avramidou, Despoina
    Germanou, Antonia
    Koutroumani, Maria
    Gkatzima, Olymbia
    Hampel, Harald
    Kehoe, Patrick G.
    Love, Seth
    Rubinsztein, David C.
    Frolich, Lutz
    McGuinness, Bernadette
    Johnston, Janet A.
    Passmore, Peter
    Drichel, Dmitriy
    Rossor, Martin
    Schott, Jonathan M.
    Warren, Jason D.
    Bras, Jose
    Guerreiro, Rita
    Kawalia, Amit
    Hughes, Joseph T.
    Patel, Yogen
    Lupton, Michelle K.
    Proitsi, Petra
    Powell, John
    Kauwe, John S. K.
    Mancuso, Michelangelo
    Bonuccelli, Ubaldo
    Uphill, James
    Fisher, Elizabeth
    Masullo, Carlo
    Soininen, Hilkka
    Bisceglio, Gina
    Ma, Li
    Dickson, Dennis W.
    Graff-Radford, Neill R.
    Carrasquillo, Minerva M.
    Younkin, Steven G.
    Sorbi, Sandro
    ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2019, 6 (03): : 456 - 465
  • [6] Polygenic risk scores in familial Alzheimer disease
    Tosto, Giuseppe
    Bird, Thomas D.
    Tsuang, Debby
    Bennett, David A.
    Boeve, Bradley F.
    Cruchaga, Carlos
    Faber, Kelley
    Foroud, Tatiana M.
    Farlow, Martin
    Goate, Alison M.
    Bertlesen, Sarah
    Graff-Radford, Neill R.
    Medrano, Martin
    Lantigua, Rafael
    Manly, Jennifer
    Ottman, Ruth
    Rosenberg, Roger
    Schaid, Daniel J.
    Schupf, Nicole
    Stern, Yaakov
    Sweet, Robert A.
    Mayeux, Richard
    NEUROLOGY, 2017, 88 (12) : 1180 - 1186
  • [7] Polygenic Hazard Scores in Preclinical Alzheimer Disease
    Tan, Chin Hong
    Hyman, Bradley T.
    Tan, Jacinth J. X.
    Hess, Christopher P.
    Dillon, William P.
    Schellenberg, Gerard D.
    Besser, Lilah M.
    Kukull, Walter A.
    Kauppi, Karolina
    McEvoy, Linda K.
    Andreassen, Ole A.
    Dale, Anders M.
    Fan, Chun Chieh
    Desikan, Rahul S.
    ANNALS OF NEUROLOGY, 2017, 82 (03) : 484 - 488
  • [8] Polygenic Risk Scores and Epistatic Components for Alzheimer's Disease Prediction
    Sun, Rui
    Xia, Xiaoxuan
    Wang, Maggie H.
    GENETIC EPIDEMIOLOGY, 2019, 43 (07) : 911 - 912
  • [9] Identification of biological pathways to Alzheimer's disease using polygenic scores
    Harrison, J.
    Baker, E.
    Hubbard, L.
    Linden, D.
    Williams, J.
    Escott-Price, V.
    Holmans, P.
    EUROPEAN PSYCHIATRY, 2017, 41 : S166 - S167
  • [10] Mitochondrial pathway polygenic risk scores are associated with Alzheimer's Disease
    Paliwal, Devashi
    McInerney, Tim W.
    Pa, Judy
    Swerdlow, Russell H.
    Easteal, Simon
    Andrews, Shea J.
    NEUROBIOLOGY OF AGING, 2021, 108 : 213 - 222