General design of self-supported Co-Ni/nitrogen-doped carbon nanotubes array for efficient oxygen evolution reaction

被引:0
|
作者
Mou, Mengfei [1 ]
Wang, Yameng [1 ]
Yu, Wenjie [1 ]
Jiang, Huimin [1 ]
Zhang, Shuo [1 ]
Zhao, Yanchao [1 ]
Ma, Jingyun [1 ]
Yan, Liting [1 ]
Kong, Xiangjun [2 ]
Zhao, Xuebo [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mat Sci & Engn, Shandong Prov Key Lab Chem Energy Storage & Novel, Jinan 250353, Peoples R China
[2] Weifang Univ, Sch Chem & Chem Engn & Environm Engn, Weifang 261061, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon nanotubes array; Density functional theory; Rearrangement charge; Oxygen evolution reaction; METAL-ORGANIC FRAMEWORKS; HIGH-PERFORMANCE; HYDROGEN; ELECTROCATALYST; GRAPHENE; NANOPARTICLES; FABRICATION; TRANSITION; NANOSHEETS; REDUCTION;
D O I
10.1016/j.jcis.2025.01.159
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging. Herein, a general strategy is proposed to utilize metal-organic frameworks (MOFs)/nickel foil to controllable synthesize self-supported CoNi/nitrogen-doped carbon nanotubes array (CoNi-NCNT/NiF) as efficient electrocatalyst for OER. The results of the experiments and density functional theory (DFT) calculations show that the synergistic effect of Co nano- particles, heteroatomic doping, and the confinement effect of the NCNTs could enhance the electronic transmission and accelerate electrocatalytic kinetics. Furthermore, the porous structure and optimized composition of CoNi-NCNT/NiF will enhance mass and charge transfer as well as intermediate adsorption, all together lead to the catalyst with excellent electrocatalytic activity and stability. A low and stable OER overpotential of 268 mV is needed for CoNi-NCNT/NiF to reach a current density of 20 mA cm- 2 in an alkaline electrolyte, which ranks among the top of the non-precious metal catalyst reported to date. This work offers new guidance for the precise construction of self-supported electrocatalysts for sustainable clean energy.
引用
收藏
页码:988 / 997
页数:10
相关论文
共 50 条
  • [31] Nitrogen-Doped Mesostructured Carbon-Supported Metallic Cobalt Nanoparticles for Oxygen Evolution Reaction
    Baehr, Alexander
    Moon, Gun-hee
    Tueysuez, Harun
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6672 - 6680
  • [32] Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes
    Wiggins-Camacho, Jaclyn D.
    Stevenson, Keith J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40): : 20002 - 20010
  • [33] Molybdenum carbide nanoparticles supported on nitrogen-doped carbon as efficient electrocatalysts for hydrogen evolution reaction
    Tao, Yuanhua
    Wang, Xueguang
    Yue, Shengnan
    Li, Fei
    Huang, Haigen
    Lu, Xionggang
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 842 : 89 - 97
  • [34] Heterostructural Co||Cu Coated with Nitrogen-Doped Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction and Hydrogen Evolution Reaction
    Cai, Jiannan
    Zhang, Xiaofeng
    Shi, Yuande
    Ye, Yanzhu
    Lin, Shen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (18): : 5986 - 5997
  • [35] Electrodeposition of self-supported Ni-Fe-Sn film on Ni foam: An efficient electrocatalyst for oxygen evolution reaction
    Wu, Yihui
    Gao, Ying
    He, Hanwei
    Zhang, Ping
    ELECTROCHIMICA ACTA, 2019, 301 (39-46) : 39 - 46
  • [36] Co-Ni alloy nanoparticles supported by carbon nanofibers for hydrogen evolution reaction
    Guan, Jibiao
    Liu, Yuanjian
    Fang, Yini
    Du, Xiangheng
    Fu, Yaqin
    Wang, Lina
    Zhang, Ming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 868
  • [37] Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting
    Geng, Bo
    Yan, Feng
    Liu, Lina
    Zhu, Chunling
    Li, Bei
    Chen, Yujin
    CHEMICAL ENGINEERING JOURNAL, 2021, 406
  • [38] MOF-derived nitrogen-doped cobalt-nickel oxide carbon nanotubes for highly efficient oxygen evolution reaction
    Zhao, Tao
    Song, Zhirong
    Wang, Xue
    Gao, Junkuo
    JOURNAL OF SOLID STATE CHEMISTRY, 2023, 326
  • [39] Self-supported AlFeNiCoMo high-entropy alloy with micropillar array structure for efficient oxygen evolution reaction
    Wang, Qianqian
    Li, Yongjie
    Yang, Yiyuan
    Zhang, Xinyue
    Guo, Yangbin
    Jia, Zhe
    Shen, Baolong
    APL MATERIALS, 2022, 10 (10)
  • [40] Ultra dispersed Co supported on nitrogen-doped carbon: An efficient electrocatalyst for oxygen reduction reaction and Zn-air battery
    Zhang, Shuai
    Shang, Ningzhao
    Gao, Shutao
    Meng, Tao
    Wang, Zhi
    Gao, Yongjun
    Wang, Chun
    CHEMICAL ENGINEERING SCIENCE, 2021, 234