Dynamics of Pinned Pulses in a Class of Nonlinear Reaction-Diffusion Equations with Strong Localized Impurities

被引:0
|
作者
Li, Ji [1 ]
Shen, Jianhe [2 ]
Zhang, Qian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Fujian Normal Univ, Coll Math & Stat, Fuzhou 350007, Peoples R China
来源
基金
国家重点研发计划;
关键词
Strong localized impurity; existence; stability; pinned solution; Hopf bifurcation; STABILITY ANALYSIS; PATTERNS; MODEL;
D O I
10.1142/S0218127425500208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For linear reaction-diffusion equations, a general geometric singular perturbation framework was developed, to study the impact of strong, spatially localized, smooth nonlinear impurities on the existence, stability, and bifurcation of localized structure, in the paper [Doelman et al., 2018]. The multiscale nature enables deriving algebraic conditions determining the existence of pinned single- and multi-pulses. Moreover, linearity enables treating the spectral stability issue for pinned pulses similarly to the problem of existence. In this paper, we move one step further to treat a special type of nonlinear reaction-diffusion equation with the same type of impurity. The additional nonlinear term generates richer and more complex dynamics. We derive algebraic conditions for determining the existence and stability of pinned pulses in terms of Legendre functions.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics
    S. A. Gourley
    J. W.-H. So
    J. H. Wu
    Journal of Mathematical Sciences, 2004, 124 (4) : 5119 - 5153
  • [32] Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain
    Arrieta, JM
    Carvalho, AN
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 143 - 178
  • [33] Wolbachia infection dynamics by reaction-diffusion equations
    MuGen Huang
    MoXun Tang
    JianShe Yu
    Science China Mathematics, 2015, 58 : 77 - 96
  • [34] Wolbachia infection dynamics by reaction-diffusion equations
    Huang MuGen
    Tang MoXun
    Yu JianShe
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 77 - 96
  • [35] DYNAMICS OF DISSIPATIVE STRUCTURES IN REACTION-DIFFUSION EQUATIONS
    PANFILOV, AV
    KEENER, JP
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (01) : 205 - 219
  • [36] Wolbachia infection dynamics by reaction-diffusion equations
    HUANG Mu Gen
    TANG Mo Xun
    YU Jian She
    Science China(Mathematics), 2015, 58 (01) : 77 - 96
  • [37] Dynamics of Fractional Delayed Reaction-Diffusion Equations
    Liu, Linfang
    Nieto, Juan J.
    ENTROPY, 2023, 25 (06)
  • [38] Finite difference reaction-diffusion equations with nonlinear diffusion coefficients
    Wang, JH
    Pao, CV
    NUMERISCHE MATHEMATIK, 2000, 85 (03) : 485 - 502
  • [39] The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates
    Leach, JA
    Needham, DJ
    Kay, AL
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 167 (3-4) : 153 - 182
  • [40] On the dynamics of a nonlinear reaction-diffusion duopoly model
    Rionero, Salvatore
    Torcicollo, Isabella
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 99 : 105 - 111