Lasing of Quantum-Dot Micropillar Lasers Under Elevated Temperatures

被引:0
|
作者
Babichev, Andrey [1 ]
Makhov, Ivan [2 ]
Kryzhanovskaya, Natalia [2 ]
Blokhin, Alexey [1 ]
Zadiranov, Yuri [1 ]
Salii, Yulia [1 ]
Kulagina, Marina [1 ]
Bobrov, Mikhail [1 ]
Vasil'ev, Alexey [1 ]
Blokhin, Sergey [1 ]
Maleev, Nikolay [1 ]
Tchernycheva, Maria [3 ]
Karachinsky, Leonid [4 ]
Novikov, Innokenty [4 ]
Egorov, Anton [4 ]
机构
[1] Ioffe Inst, St Petersburg 194021, Russia
[2] HSE Univ, St Petersburg 190008, Russia
[3] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, CNRS, UMR9001, F-91120 Palaiseau, France
[4] ITMO Univ, St Petersburg 197101, Russia
基金
俄罗斯科学基金会;
关键词
Microcavities; Distributed Bragg reflectors; Q-factor; Vertical cavity surface emitting lasers; Etching; Photonics; Optical pumping; Numerical models; Laser modes; Personal protective equipment; Fundamental vertical mode; micropillar; distributed Bragg reflectors; quantum dots; reservoir computing;
D O I
10.1109/JSTQE.2024.3494245
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A comprehensive numerical modelling of microcavity parameters for micropillar lasers with optical pumping was presented. The structure with a hybrid dielectric-semiconductor top mirror has a significantly higher calculated quality-factor (similar to 65000 for 5 mu m pillar) due to better vertical mode confinement. The minimum laser threshold (similar to 370 mu W for 5 mu m pillar) coincided with a temperature of 130 K, which is close to zero gain to cavity detuning. Lasing up to 220 K was demonstrated with a laser threshold of about 2.2 mW.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The role of free carriers and excitons on the lasing characteristics of InAs/InGaAs quantum-dot lasers
    Dikshit, A
    Pikal, JM
    APPLIED PHYSICS LETTERS, 2003, 82 (26) : 4812 - 4814
  • [22] Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers
    Mao, MH
    Su, LC
    Wang, KC
    Liu, WS
    Chiu, PC
    Chyi, JI
    2005 IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 2005, : 39 - 40
  • [23] Lasing and transport in a quantum-dot resonator circuit
    Jin, Pei-Qing
    Marthaler, Michael
    Cole, Jared H.
    Shnirman, Alexander
    Schoen, Gerd
    PHYSICAL REVIEW B, 2011, 84 (03):
  • [24] Spin-Lasing in Bimodal Quantum Dot Micropillar Cavities
    Heermeier, Niels
    Heuser, Tobias
    Grosse, Jan
    Jung, Natalie
    Kaganskiy, Arsenty
    Lindemann, Markus
    Gerhardt, Nils C.
    Hofmann, Martin R.
    Reitzenstein, Stephan
    LASER & PHOTONICS REVIEWS, 2022, 16 (04)
  • [25] Carrier statistics in quantum-dot lasers
    Grundmann, M
    Heitz, R
    Bimberg, D
    PHYSICS OF THE SOLID STATE, 1998, 40 (05) : 772 - 774
  • [26] Quantum-Dot Lasers: Physics and Applications
    Smowton, P. M.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [27] Tunneling injection quantum-dot lasers
    Chuang, S. L.
    Kim, J.
    Kondratko, P. K.
    Walter, G.
    Holonyak, N., Jr.
    Heller, R. D.
    Zhang, X. B.
    Dupuis, R. D.
    PROGRESS IN SEMICONDUCTOR MATERIALS V-NOVEL MATERIALS AND ELECTRONIC AND OPTOELECTRONIC APPLICATIONS, 2006, 891 : 51 - +
  • [28] Quantum-dot semiconductor disk lasers
    Germann, T. D.
    Strittmatter, A.
    Pohl, U. W.
    Bimberg, D.
    Rautiainen, J.
    Guina, M.
    Okhotnikov, O. G.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (23) : 5182 - 5186
  • [29] Semiconductor quantum-dot lasers and amplifiers
    Hvam, JM
    Borri, P
    Ledentsov, NN
    Bimberg, D
    SEMICONDUCTOR LASERS AND OPTICAL AMPLIFIERS FOR LIGHTWAVE COMMUNICATION SYSTEMS, 2002, 4871 : 130 - 140
  • [30] Optically injected quantum-dot lasers
    Erneux, T.
    Viktorov, E. A.
    Kelleher, B.
    Goulding, D.
    Hegarty, S. P.
    Huyet, G.
    OPTICS LETTERS, 2010, 35 (07) : 937 - 939