Feature-wise Optimization and Performance-weighted Multimodal Fusion for Social Perception Recognition

被引:0
|
作者
Atmaja, Bagus Tris [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan
关键词
multimodal fusion; sentiment analysis; social perception; parameter optimization;
D O I
10.1145/3689062.3689082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic social perception recognition is a new task to mimic the measurement of human traits, which was previously done by humans via questionnaires. We evaluated unimodal and multimodal systems to predict agentive and communal traits from the LMU-ELP dataset. We optimized variants of recurrent neural networks from each feature from audio and video data and then fused them to predict the traits. Results on the development set show a consistent trend that multimodal fusion outperforms unimodal systems. The performance-weighted fusion also consistently outperforms mean and maximum fusions. We found two important factors that influence the performance of performance-weighted fusion. These factors are normalization and the number of models.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 50 条
  • [41] Speech emotion recognition using multimodal feature fusion with machine learning approach
    Sandeep Kumar Panda
    Ajay Kumar Jena
    Mohit Ranjan Panda
    Susmita Panda
    Multimedia Tools and Applications, 2023, 82 : 42763 - 42781
  • [42] Multimodal emotion recognition from facial expression and speech based on feature fusion
    Tang, Guichen
    Xie, Yue
    Li, Ke
    Liang, Ruiyu
    Zhao, Li
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 16359 - 16373
  • [43] Speech emotion recognition using multimodal feature fusion with machine learning approach
    Panda, Sandeep Kumar
    Jena, Ajay Kumar
    Panda, Mohit Ranjan
    Panda, Susmita
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42763 - 42781
  • [44] Multimodal feature fusion for CNN-based gait recognition: an empirical comparison
    Castro, Francisco M.
    Marin-Jimenez, Manuel J.
    Guil, Nicolas
    de la Blanca, Nicolas
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (17): : 14173 - 14193
  • [45] Feature Fusion for Multimodal Emotion Recognition Based on Deep Canonical Correlation Analysis
    Zhang, Ke
    Li, Yuanqing
    Wang, Jingyu
    Wang, Zhen
    Li, Xuelong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1898 - 1902
  • [46] A novel signal to image transformation and feature level fusion for multimodal emotion recognition
    Yilmaz, Bahar Hatipoglu
    Kose, Cemal
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2021, 66 (04): : 353 - 362
  • [47] Multimodal Emotion Recognition Fusion Analysis Adapting BERT With Heterogeneous Feature Unification
    Lee, Sanghyun
    Han, David K.
    Ko, Hanseok
    IEEE ACCESS, 2021, 9 : 94557 - 94572
  • [48] Multimodal emotion recognition from facial expression and speech based on feature fusion
    Guichen Tang
    Yue Xie
    Ke Li
    Ruiyu Liang
    Li Zhao
    Multimedia Tools and Applications, 2023, 82 : 16359 - 16373
  • [49] Multimodal feature fusion for CNN-based gait recognition: an empirical comparison
    Francisco M. Castro
    Manuel J. Marín-Jiménez
    Nicolás Guil
    Nicolás Pérez de la Blanca
    Neural Computing and Applications, 2020, 32 : 14173 - 14193
  • [50] Multimodal Finger-feature Fusion and Recognition Based on Tolerance Granular Space
    Li, Ruimei
    Jia, Guimin
    Shi, Yihua
    Yang, Jinfeng
    BIOMETRIC RECOGNITION, CCBR 2015, 2015, 9428 : 553 - 560