Activation of g-C3N4 by oxidative treatment for enhanced photocatalytic H2 evolution

被引:0
|
作者
Kharina, Sofiya [1 ]
Kurenkova, Anna [1 ,2 ]
Aydakov, Egor [2 ]
Mishchenko, Denis [2 ]
Gerasimov, Evgeny [1 ]
Saraev, Andrey [2 ]
Zhurenok, Angelina [1 ]
Lomakina, Viktoria [1 ]
Kozlova, Ekaterina [1 ]
机构
[1] Russian Acad Sci, Boreskov Inst Catalysis, Siberian Branch, Novosibirsk 630090, Russia
[2] RAS, Synchrotron Radiat Facil SKIF, Boreskov Inst Catalysis, SB, Koltsov 630559, Russia
基金
俄罗斯科学基金会;
关键词
Graphitic carbon nitride; Hydrothermal treatment; Hydrogen peroxide; Hydrogen; Biomass conversion; Photocatalysis; Photocatalyst; GRAPHITIC CARBON NITRIDE; OXYGEN-DOPED G-C3N4; HYDROTHERMAL SYNTHESIS; SURFACE MODIFICATION; POROUS G-C3N4; NANOSHEETS; FABRICATION; EFFICIENCY; EDGE;
D O I
10.1016/j.apsusc.2025.163074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphitic carbon nitride g-C3N4 has attracted a scientific interest as a visible light active non-metallic photo-catalyst for a H2 evolution. Recently, the techniques aimed at oxidizing g-C3N4 surface have been investigated in order to improve its photocatalytic properties. The present study is devoted to the modification of g-C3N4 via hydrothermal treatment in aqueous H2O2 solution. The treatment led to partial structural decomposition and functionalization of the g-C3N4 surface with-C=O and-COOH groups, thereby affecting the structural, textural, and electronic properties. The platinum deposited on the surface of the pretreated g-C3N4 was in a special configuration with metal particles surrounded by single atoms. The platinized g-C3N4 treated in H2O2 solution at 140 degrees C was shown to be active in H2 evolution from glucose aqueous solution with a reaction rate of 344 mu mol H2 center dot h-1 center dot(gcat)-1 (lambda max= 440 nm), while Pt/g-C3N4 without hydrothermal treatment demonstrated no activity. Moreover, the activity of platinized g-C3N4 after hydrothermal treatment was improved by a factor of 9.5 and 4.3 in ethanol and triethanolamine aqueous solutions, respectively. The study presents a novel simple avenue for the synthesis of g-C3N4-based photocatalyst for H2 generation from different substrates, including plant biomass components, thus expanding the scope of g-C3N4 applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] NiS and graphene as dual cocatalysts for the enhanced photocatalytic H2 production activity of g-C3N4
    Chen, Zhe
    Yang, Shuibin
    Tian, Zhengfang
    Zhu, Bicheng
    APPLIED SURFACE SCIENCE, 2019, 469 : 657 - 665
  • [32] Review on synthesis and modification of g-C3N4 for photocatalytic H2 production
    Saman, Faten
    Ling, Celine Hee Se
    Ayub, Athirah
    Rafeny, Nur Husnina Bazilah
    Mahadi, Abdul Hanif
    Subagyo, Riki
    Nugraha, Reva Edra
    Prasetyoko, Didik
    Bahruji, Hasliza
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 77 : 1090 - 1116
  • [33] Copper phosphide decorated g-C3N4 catalysts for highly efficient photocatalytic H2 evolution
    Zhou, Hongmiao
    Chen, Ruolin
    Han, Changcun
    Wang, Pan
    Tong, Zhengfu
    Tan, Baohua
    Huang, Yizhong
    Liu, Zhifeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 610 : 126 - 135
  • [34] Enhanced visible light photocatalytic H2 evolution of metal-free g-C3N4/SiC heterostructured photocatalysts
    Wang, Biao
    Zhang, Jingtao
    Huang, Feng
    APPLIED SURFACE SCIENCE, 2017, 391 : 449 - 456
  • [35] g-C3N4 Hydrogen-Bonding Viologen for Significantly Enhanced Visible-Light Photocatalytic H2 Evolution
    Liu, Ya-Nan
    Shen, Cong-Cong
    Jiang, Nan
    Zhao, Zhi-Wei
    Zhou, Xiao
    Zhao, Sheng-Jie
    Xu, An-Wu
    ACS CATALYSIS, 2017, 7 (12): : 8228 - 8234
  • [36] Insight into the role of Ni atoms at the interface of g-C3N4/CdS in photocatalytic H2 evolution
    Ma, Dandan
    Zhang, Xiaoyu
    Yang, Chao
    Feng, Xiangbo
    Zhang, Zhen-Feng
    Song, Kunli
    Wu, Shangyuan
    Li, Lu
    Jiang, Ting
    Shi, Jian-Wen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 327
  • [37] Organic-Organic Hybrid g-C3N4/Ethanediamine Nanosheets for Photocatalytic H2 Evolution
    Meng, Jie
    Lan, Zhenyun
    Chen, Tao
    Lin, Qingyun
    Liu, Hui
    Wei, Xiao
    Lu, Yunhao
    Li, Jixue
    Zhang, Ze
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (43): : 24725 - 24731
  • [38] Bimetallic phosphide NiCoP anchored g-C3N4 nanosheets for efficient photocatalytic H2 evolution
    Jin, Chenyang
    Xu, Chenhui
    Chang, Wenxi
    Ma, Xinyi
    Hu, Xiaoyun
    Liu, Enzhou
    Fan, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 803 : 205 - 215
  • [39] Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine
    Zhong, Yujiao
    Wang, Zhiqiang
    Feng, Jianyong
    Yan, Shicheng
    Zhang, Haitao
    Li, Zhaosheng
    Zou, Zhigang
    APPLIED SURFACE SCIENCE, 2014, 295 : 253 - 259
  • [40] Boosting photocatalytic H2 evolution on g-C3N4 by modifying covalent organic frameworks (COFs)
    Luo, Maolan
    Yang, Qing
    Liu, Kewei
    Cao, Hongmei
    Yan, Hongjian
    CHEMICAL COMMUNICATIONS, 2019, 55 (41) : 5829 - 5832