Graphene-based Surface Plasmon Resonance Biosensor Design Using Square-shaped Metamaterial Resonators for Blood Cancer Detection

被引:2
|
作者
Alsalman, Osamah [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Elect Engn, POB 800, Riyadh 11421, Saudi Arabia
关键词
Surface plasmon resonance; Biosensor; Metasurface; Graphene; GST;
D O I
10.1007/s11468-024-02652-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents a highly sensitive sensor, specifically designed with a unique structure and advanced materials, including graphene and metamaterials, to enhance early detection of blood cancer. The sensor's structure is meticulously optimized, with graphene serving as a resonating layer and metamaterials integrated to amplify its performance. These materials, combined with the carefully configured structural parameters, create a sensor with superior sensitivity and efficiency. Additionally, adjustments to the angle of light incidence are explored to examine their influence on detection accuracy, further enhancing the sensor's capabilities. Through this optimized design, the sensor gets an impressive sensitivity of 2143 nm/RIU, making it highly effective for detecting subtle refractive index changes associated with blood cancer biomarkers. Early detection of blood cancer, a condition that can be life-threatening if diagnosed late, is crucial for improving patient outcomes. This sensor, with its high sensitivity and optimized structural design, provides an efficient and powerful tool for early-stage blood cancer diagnosis.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor
    Karki, Bhishma
    Vasudevan, B.
    Uniyal, Arun
    Pal, Amrindra
    Srivastava, Vivek
    OPTIK, 2022, 270
  • [2] Graphene-Based Surface Plasmon Resonance Biosensor Design Based on Au-MgF2-Au Material for Blood Cancer Detection
    Vithyalakshmi, N.
    Nagabushanam, P.
    Prabhu, Sandeep
    Al-Zahrani, Fahad Ahmed
    PLASMONICS, 2025,
  • [3] Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection
    Abinash Panda
    Puspa Devi Pukhrambam
    Gerd Keiser
    Applied Physics A, 2020, 126
  • [4] Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection
    Panda, Abinash
    Pukhrambam, Puspa Devi
    Keiser, Gerd
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2020, 126 (03):
  • [5] Graphene-Based Machine Learning-Optimized Surface Plasmon Resonance Biosensor Design for Skin Cancer Detection
    Nithya, S.
    Muthuswamy, Jayanthi
    Alsalman, Osamah
    Patel, Shobhit K.
    PLASMONICS, 2025,
  • [6] Optimization of Graphene-Based Square Slotted Surface Plasmon Resonance Refractive Index Biosensor for Accurate Detection of Pregnancy
    Almawgani, Abdulkarem H. M.
    Wekalao, Jacob
    Patel, Shobhit K.
    Alzahrani, Ahmad
    Gumaih, Hussein S.
    Armghan, Ammar
    PLASMONICS, 2024, 20 (1) : 443 - 457
  • [7] Graphene-based Hyperbola-shaped Surface Plasmon Resonance Highly Sensitive Biosensor for Detection of Cancerous Cells
    Bhesaniya, Nimit
    Manvani, Rinku
    Patel, Shobhit K.
    Alzahrani, Ahmad
    Almawgani, Abdulkarem H. M.
    Armghan, Ammar
    PLASMONICS, 2024, 19 (06) : 3273 - 3285
  • [8] Graphene-based Surface Plasmon Resonance Urea Biosensor using Kretschmann configuration
    Jamil, Nur Akmar
    Menon, P. Susthitha
    Said, Fairus Atida
    Tarumaraja, Kalaivani A.
    Mei, Gan Siew
    Majlis, Burhanuddin Yeop
    PROCEEDINGS OF THE 2017 IEEE REGIONAL SYMPOSIUM ON MICRO AND NANOELECTRONICS (RSM), 2017, : 112 - 115
  • [9] On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance
    Dash, Jitendra Narayan
    Jha, Rajan
    PLASMONICS, 2015, 10 (05) : 1123 - 1131
  • [10] On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance
    Jitendra Narayan Dash
    Rajan Jha
    Plasmonics, 2015, 10 : 1123 - 1131