A detailed spatiotemporal atlas of the white matter tracts for the fetal brain

被引:0
|
作者
Calixto, Camilo [1 ,2 ]
Soldatelli, Matheus Dorigatti [1 ,2 ]
Jaimes, Camilo [2 ,3 ]
Pierotich, Lana [1 ,2 ]
Warfield, Simon K. [1 ,2 ]
Gholipour, Ali [1 ,2 ,4 ]
Karimi, Davood [1 ,2 ]
机构
[1] Boston Childrens Hosp, Computat Radiol Lab, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Massachusetts Gen Hosp, Boston, MA 02114 USA
[4] Univ Calif Irvine, Dept Radiol Sci, Irvine, CA 92868 USA
关键词
fetal brain development; diffusion MRI; white matter tracts; spatiotemporal atlas; CEREBRAL-CORTEX; IN-UTERO; DIFFUSION; TRACTOGRAPHY; REGISTRATION; CHILDHOOD; MONKEY; REPRODUCIBILITY; RECONSTRUCTION; ORGANIZATION;
D O I
10.1073/pnas.2410341121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), coinciding with the intensity of histogenic processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection
    Lawes, I. Nigel C.
    Barrick, Thomas R.
    Murugam, Vengadasalam
    Spierings, Natalia
    Evans, David R.
    Song, Marie
    Clark, Chris A.
    NEUROIMAGE, 2008, 39 (01) : 62 - 79
  • [22] Visualizing white matter tracts and brain structure using phase imaging
    Haacke, EM
    Herigault, G
    An, H
    Lin, W
    Armao, DM
    Kido, DK
    RADIOLOGY, 2001, 221 : 344 - 344
  • [23] Diffusion Tensor Imaging Tractography of White Matter Tracts in the Equine Brain
    Boucher, Samuel
    Arribarat, Germain
    Cartiaux, Benjamin
    Lallemand, Elodie Anne
    Peran, Patrice
    Deviers, Alexandra
    Mogicato, Giovanni
    FRONTIERS IN VETERINARY SCIENCE, 2020, 7
  • [24] Stimulation mapping of white matter tracts to study brain functional connectivity
    Duffau, Hugues
    NATURE REVIEWS NEUROLOGY, 2015, 11 (05) : 255 - 265
  • [25] Stimulation mapping of white matter tracts to study brain functional connectivity
    Hugues Duffau
    Nature Reviews Neurology, 2015, 11 : 255 - 265
  • [26] Impact of white matter hyperintensities on surrounding white matter tracts
    Reginold, William
    Sam, Kevin
    Poublanc, Julien
    Fisher, Joe
    Crawley, Adrian
    Mikulis, David J.
    NEURORADIOLOGY, 2018, 60 (09) : 933 - 944
  • [27] Impact of white matter hyperintensities on surrounding white matter tracts
    William Reginold
    Kevin Sam
    Julien Poublanc
    Joe Fisher
    Adrian Crawley
    David J. Mikulis
    Neuroradiology, 2018, 60 : 933 - 944
  • [28] Why do White Matter tracts matter?
    Bhatt, Pragnesh
    JOURNAL OF ANATOMY, 2020, 236 : 299 - 300
  • [29] A detailed marmoset brain atlas
    Nina Vogt
    Nature Methods, 2020, 17 : 251 - 251
  • [30] A detailed marmoset brain atlas
    Vogt, Nina
    NATURE METHODS, 2020, 17 (03) : 251 - 251