On the number of limit cycles for a perturbed cubic reversible Hamiltonian system

被引:0
|
作者
Yang, Jihua [1 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
ISOCHRONOUS CENTERS; PIECEWISE-SMOOTH; BIFURCATION; INTEGRALS; PLANAR;
D O I
10.1063/5.0211447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the limit cycle problem of a cubic reversible Hamiltonian system under perturbation of polynomials of degree n with a switching line x = 0. The upper and lower bounds of the number of limit cycles are obtained using the first order Melnikov function and its expansion. The method for calculating the Melnikov function relies upon some iterative formulas, which differs from other approaches.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Bifurcations of limit cycles in a perturbed quintic Hamiltonian system with six double homoclinic loops
    Gao, Yong-xi
    Wu, Yu-hai
    Tian, Li-xin
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (02): : 313 - 328
  • [32] Bifurcations of limit cycles for a perturbed quintic Hamiltonian system with four infinite singular points
    Zhou, Hongxian
    Xu, Wei
    Zhao, Xiaoshan
    Zhou, Bingchang
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 686 - 700
  • [33] Reversible Limit Cycles for Linear Plus Cubic Homogeneous Polynomial Differential System
    Wang, Luping
    Zhao, Yulin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (02)
  • [34] Fifteen Limit Cycles Bifurcating from a Perturbed Cubic Center
    Menaceur, Amor
    Alrawashdeh, Mufda
    Idris, Sahar Ahmed
    Abd-Elmageed, Hala
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [35] Limit Cycles Bifurcating from a Class of Cubic Hamiltonian Systems
    Chen, Yuanyuan
    Yu, Jiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (06):
  • [36] Limit Cycles of A Cubic Kolmogorov System
    Li, Feng
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 619 - 622
  • [37] Limit cycles of a cubic Kolmogorov system
    Lloyd, NG
    Pearson, JM
    Saez, E
    Szanto, I
    APPLIED MATHEMATICS LETTERS, 1996, 9 (01) : 15 - 18
  • [38] Limit cycles near a homoclinic loop connecting a tangent saddle in a perturbed quadratic Hamiltonian system
    Li, Jing
    Sun, Xianbo
    Huang, Wentao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 120
  • [40] Bifurcations of limit cycles in a cubic system
    Zhang, TH
    Zang, H
    Han, MA
    CHAOS SOLITONS & FRACTALS, 2004, 20 (03) : 629 - 638