Temporal Graph Neural Networks for Irregular Data

被引:0
|
作者
Oskarsson, Joel [1 ]
Siden, Per [1 ,2 ]
Lindsten, Fredrik [1 ]
机构
[1] Linkoping Univ, Linkoping, Sweden
[2] Arriver Software AB, Lund, Sweden
基金
瑞典研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a temporal graph neural net-work model for forecasting of graph-structured irregularly observed time series. Our TGNN4I model is designed to handle both irregular time steps and partial observations of the graph. This is achieved by introducing a time-continuous la-tent state in each node, following a linear Ordi-nary Differential Equation (ODE) defined by the output of a Gated Recurrent Unit (GRU). The ODE has an explicit solution as a combination of exponential decay and periodic dynamics. Observations in the graph neighborhood are taken into account by integrating graph neural network layers in both the GRU state update and predictive model. The time-continuous dynamics additionally enable the model to make predictions at arbitrary time steps. We propose a loss function that leverages this and allows for training the model for forecasting over different time horizons. Experiments on simulated data and real-world data from traffic and climate modeling validate the usefulness of both the graph structure and time-continuous dynamics in settings with irregular observations.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Explainable Spatio-Temporal Graph Neural Networks
    Tang, Jiabin
    Xia, Lianghao
    Huang, Chao
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2432 - 2441
  • [12] Temporal Collaborative Filtering with Graph Convolutional Neural Networks
    Bonet, Esther Rodrigo
    Duc Minh Nguyen
    Deligiannis, Nikos
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4736 - 4742
  • [13] Temporal Bipartite Graph Neural Networks for Bond Prediction
    Zhou, Dan
    Uddin, Ajim
    Shang, Zuofeng
    Tao, Xinyuan
    Yu, Dantong
    3RD ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2022, 2022, : 308 - 316
  • [14] Temporal Multiresolution Graph Neural Networks For Epidemic Prediction
    Truong Son Hy
    Viet Bach Nguyen
    Long Tran-Thanh
    Kondor, Risi
    WORKSHOP ON HEALTHCARE AI AND COVID-19, VOL 184, 2022, 184 : 21 - 32
  • [15] Inferring Patient Zero on Temporal Networks via Graph Neural Networks
    Ru, Xiaolei
    Moore, Jack Murdoch
    Zhang, Xin-Ya
    Zeng, Yeting
    Yan, Gang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9632 - 9640
  • [16] Graph Neural Networks in Biomedical Data: A Review
    Li, You
    Zhang, Guiyang
    Wang, Pan
    Yu, Zuo-Guo
    Huang, Guohua
    CURRENT BIOINFORMATICS, 2022, 17 (06) : 483 - 492
  • [17] Adversarial Attacks on Neural Networks for Graph Data
    Zuegner, Daniel
    Akbarnejad, Amir
    Guennemann, Stephan
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6246 - 6250
  • [18] Spatial-Temporal Data Inference With Graph Attention Neural Networks in Sparse Mobile Crowdsensing
    Yang, Guisong
    Wen, Panpan
    Liu, Yutong
    Kong, Linghe
    Liu, Yunhuai
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05): : 4617 - 4626
  • [19] HodgeNet: Graph Neural Networks for Edge Data
    Roddenberry, T. Mitchell
    Segarra, Santiago
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 220 - 224
  • [20] Rationalizing Graph Neural Networks with Data Augmentation
    Liu, Gang
    Inae, Eric
    Luo, Tengfei
    Jiang, Meng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)