Estimation and uniform inference in sparse high-dimensional additive models

被引:0
|
作者
Bach, Philipp [1 ]
Klaassen, Sven [1 ]
Kueck, Jannis [2 ]
Spindler, Martin [1 ]
机构
[1] Univ Hamburg, Hamburg, Germany
[2] Heinrich Heine Univ Dusseldorf, Dusseldorf, Germany
关键词
Additive models; High-dimensional setting; Z-estimation; Double machine learning; Lasso; SIMULTANEOUS CONFIDENCE BANDS; POST-SELECTION; REGRESSION; PARAMETERS; BOOTSTRAP; DEVIATION; REGIONS; LASSO;
D O I
10.1016/j.jeconom.2025.105973
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a novel method to construct uniformly valid confidence bands for a nonparametric component f(1) in the sparse additive model Y= f(1)(X-1) +... +f(p)(X-p) + epsilon in a high-dimensional setting. Our method integrates sieve estimation into a high-dimensional Z-estimation framework, facilitating the construction of uniformly valid confidence bands for the target component f(1) To form these confidence bands, we employ a multiplier bootstrap procedure. Additionally, we provide rates for the uniform lasso estimation in high dimensions, which may be of independent interest. Through simulation studies, we demonstrate that our proposed method delivers reliable results in terms of estimation and coverage, even in small samples.
引用
收藏
页数:52
相关论文
共 50 条
  • [21] Improved Estimation of High-dimensional Additive Models Using Subspace Learning
    He, Shiyuan
    He, Kejun
    Huang, Jianhua Z.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 866 - 876
  • [22] Structural inference in sparse high-dimensional vector autoregressions
    Krampe, J.
    Paparoditis, E.
    Trenkler, C.
    JOURNAL OF ECONOMETRICS, 2023, 234 (01) : 276 - 300
  • [23] Sparse estimation of high-dimensional correlation matrices
    Cui, Ying
    Leng, Chenlei
    Sun, Defeng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 390 - 403
  • [24] High-dimensional IV cointegration estimation and inference☆
    Phillips, Peter C. B.
    Kheifets, Igor L.
    JOURNAL OF ECONOMETRICS, 2024, 238 (02)
  • [25] Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
    Binder, Harald
    Schumacher, Martin
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [26] Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
    Harald Binder
    Martin Schumacher
    BMC Bioinformatics, 9
  • [27] Group inference for high-dimensional mediation models
    Yu, Ke
    Guo, Xu
    Luo, Shan
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [28] Robust Testing in High-Dimensional Sparse Models
    George, Anand Jerry
    Canonne, Clement L.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [29] Simultaneous Inference for High-Dimensional Linear Models
    Zhang, Xianyang
    Cheng, Guang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 757 - 768
  • [30] High-dimensional inference in misspecified linear models
    Buehlmann, Peter
    van de Geer, Sara
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 1449 - 1473