Experimental Investigation of Miscibility and Enhanced Oil Recovery Mechanisms in Tight Reservoirs Using Gas Flooding

被引:0
|
作者
Nie, Xiaobin [1 ]
Mensah, Desmond Asiedu [2 ,3 ]
Li, Zhihong [1 ]
Wang, Qixiang [1 ]
Song, Yatian [1 ]
Liang, Baoxing [1 ]
Chen, Hao [2 ,3 ]
机构
[1] PetroChina Xinjiang Oilfield Co, Res Inst Explorat & Dev, Karamay 834000, Peoples R China
[2] China Univ Petr, Hainan Inst, Sanya 572000, Hainan, Peoples R China
[3] State Key Lab Petr Resources & Engn, Beijing 102249, Peoples R China
关键词
CO2; INJECTION; HETEROGENEITY;
D O I
10.1021/acs.energyfuels.4c05347
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
China has significant tight oil reserves, particularly in the Mahu sag tight sandstone reservoir in the Junggar Basin, Xinjiang, China. Despite the effective use of volumetric fracturing technology, challenges such as a low recovery factor and rapid decline in production capacity persist. This study conducted a series of experiments, including minimum miscibility pressure tests, gas injection expansion tests, and mass transfer experiments, to investigate miscibility and enhanced oil recovery mechanisms in Block Y of the Mahu sag using gas flooding. The results reveal that the dissolution of injected gas improves crude oil properties, reduces viscosity, enhances flow capacity, and causes volumetric expansion, effectively boosting the elastic driving energy. The minimum miscibility pressures of the crude oil with dry gas and CO2 are 37.36 and 27.76 MPa, respectively. Under these conditions, oil recovery efficiencies for both gases reach 95%. Notably, the gas injection expansion experiments show significant increases in the saturation pressure, volume expansion coefficient, and gas-to-oil ratio for dry gas and CO2. The viscosity and density of the crude oil decreased by 44 and 47.6% for dry gas, and by 49 and 22.9% for CO2. The mass transfer mechanisms differ between dry gas and CO2: dry gas primarily undergoes condensation, while CO2 undergoes extraction. High-pressure pressure-volume-temperature tests provided insights into the volumetric and phase behavior of reservoir oil when mixed with various gases. This investigation into miscibility and EOR mechanisms reveals that gas flooding can effectively alter oil-phase behavior, reduce interfacial tension, and improve displacement efficiency. These findings offer valuable insights for future field applications and guide subsequent research in enhanced oil recovery, highlighting the promising role of gas flooding in optimizing resource extraction from tight formations.
引用
收藏
页码:419 / 431
页数:13
相关论文
共 50 条
  • [41] The Potential of Enhanced Oil Recovery by Micellar/Polymer Flooding in Heterogeneous Reservoirs
    Dang, Q. C.
    Chen, Z.
    Nguyen, T. B. N.
    Bae, W.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2014, 36 (14) : 1540 - 1554
  • [42] Investigation of natural gas flooding and its channelling prevention as enhanced oil recovery method
    Lifei, Dong
    Miao, Wang
    Wei, Wang
    Hun, Lin
    GEOSYSTEM ENGINEERING, 2021, 24 (03) : 137 - 144
  • [43] Enhanced oil recovery mechanisms of polymer flooding in a heterogeneous oil reservoir
    Lu Xiangguo
    Cao Bao
    Xie Kun
    Cao Weijia
    Liu Yigang
    Zhang Yunbao
    Wang Xiaoyan
    Zhang Jie
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2021, 48 (01) : 169 - 178
  • [44] Enhanced oil recovery mechanisms of polymer flooding in a heterogeneous oil reservoir
    Lu X.
    Cao B.
    Xie K.
    Cao W.
    Liu Y.
    Zhang Y.
    Wang X.
    Zhang J.
    Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 2021, 48 (01): : 148 - 155
  • [45] Enhanced oil recovery mechanisms of polymer flooding in a heterogeneous oil reservoir
    LU Xiangguo
    CAO Bao
    XIE Kun
    CAO Weijia
    LIU Yigang
    ZHANG Yunbao
    WANG Xiaoyan
    ZHANG Jie
    Petroleum Exploration and Development, 2021, 48 (01) : 169 - 178
  • [46] Experimental Study on Oil Recovery of Tight Oil Reservoirs in Different Oil Occurrence States
    Zhou, Xiaofeng
    Wei, Huanke
    Liu, Yu
    Wei, Jianguang
    Chen, Yinghe
    Shamil, Sultanov
    Zhang, Xiangyu
    Abdumalik, Gayubov
    Qiu, Ping
    ENERGY & FUELS, 2023, 37 (23) : 18878 - 18889
  • [47] Insights into enhanced oil recovery by thermochemical fluid flooding for ultra-heavy reservoirs: An experimental study
    Sun, Qian
    Zhang, Na
    Liu, Wei
    Li, Binfei
    Li, Songyan
    Bhusal, Aabiskar
    Wang, Shuhua
    Li, Zhaomin
    FUEL, 2023, 331
  • [48] Experimental investigation on the effect of interfacial properties of chemical flooding for enhanced heavy oil recovery
    Cao, Han
    Li, Yiqiang
    Gao, Wenbin
    Cao, Jinxin
    Sun, Bingyu
    Zhang, Jin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 677
  • [49] Understanding Imbibition Mechanisms of Catanionic Surfactant-Stabilized Nanoemulsion for Enhanced Oil Recovery in Tight Sandstone Reservoirs: Experimental and Numerical Assessment
    Wei, Bing
    Wang, Lele
    Mao, Runxue
    Yu, Guanqun
    Wang, Dianlin
    Lu, Jun
    Tang, Jinyu
    SPE JOURNAL, 2023, 28 (03): : 1437 - 1452
  • [50] Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs
    Wang, Lei
    Tian, Ye
    Yu, Xiangyu
    Wang, Cong
    Yao, Bowen
    Wang, Shihao
    Winterfeld, Philip H.
    Wang, Xu
    Yang, Zhenzhou
    Wang, Yonghong
    Cui, Jingyuan
    Wu, Yu-Shu
    FUEL, 2017, 210 : 425 - 445