Sum of the GL(3) Fourier coefficients over mixed powers

被引:0
|
作者
Chanana, Himanshi [1 ]
Singh, Saurabh Kumar [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kalyanpur 208016, India
关键词
Maass form; circle method; triple divisor function; Voronoi summation formula; mixed powers; EXPONENTIAL-SUMS; DIVISORS; BOUNDS;
D O I
10.1142/S1793042125500265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S(n) be the (1,n)th Fourier coefficient of SL(3, Z) Hecke-Maass cusp form, denoted as A(1,n) or the triple divisor function, denoted as d(3)(n). Let k >= 3 be an integer. In this paper, we establish an asymptotic formula for the sum Sigma(1,n2 <= X)1(/2) (1 <= n3 <= X)1(/k) A(Q(n(1),n(2))+n(3)(k))a(n (3)), where a(n) is either von Mangoldt function or identity function, and Q(x,y) is an element of Z[x,y] is a binary quadratic polynomial. When A(n) = A(1,n), then a(n) can be any bounded arithmetical function.
引用
收藏
页码:531 / 577
页数:47
相关论文
共 50 条