Regret Analysis of Shrinking Horizon Model Predictive Control

被引:0
|
作者
Ambrosino, Michele [1 ]
Castroviejo-Fernandez, Miguel [1 ]
Leung, Jordan [1 ]
Kolmanovsky, Ilya [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
关键词
model predictive control; constrained control; regret analysis; numerical methods for optimal control; STABILITY;
D O I
10.1115/1.4066317
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper analyzes the suboptimal implementation of shrinking horizon model predictive control (SHMPC) when a fixed number of solver iterations and a warm-start are utilized at each time-step to solve the underlying optimal control problem (OCP). We derive bounds on the loss of performance (regret) and on the difference between suboptimal SHMPC and optimal solutions. This analysis provides insights and practical guidelines for the implementation of SHMPC under computational limitations. A numerical example of axisymmetric spacecraft spin stabilization is reported. The suboptimal implementation of SHMPC is shown to be capable of steering the system from an initial state into a known terminal set while satisfying control constraints.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A stable block model predictive control with variable implementation horizon
    Sun, Jing
    Kolmanovsky, Ilya V.
    Ghaemi, Reza
    Chen, Shuhao
    AUTOMATICA, 2007, 43 (11) : 1945 - 1953
  • [42] A stable block model predictive control with variable implementation horizon
    Sun, J
    Chen, SH
    Kolmanovsky, I
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 834 - 839
  • [43] Robust variable horizon model predictive control for vehicle maneuvering
    Richards, A
    How, JP
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2006, 16 (07) : 333 - 351
  • [44] An Algorithm for Estimating Upper Bound Horizon in Model Predictive Control
    Duan, Guangren
    Sun, Yong
    Zhang, Maorui
    Zhang, Ze
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 823 - 827
  • [45] Robustly stable adaptive horizon nonlinear model predictive control
    Griffith, Devin W.
    Biegler, Lorenz T.
    Patwardhan, Sachin C.
    JOURNAL OF PROCESS CONTROL, 2018, 70 : 109 - 122
  • [46] Stability for Receding-horizon Stochastic Model Predictive Control
    Paulson, Joel A.
    Streif, Stefan
    Mesbah, Ali
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 937 - 943
  • [47] Single Degree of Freedom Model Predictive Control with Variable Horizon
    Makarow, Artemi
    Roesmann, Christoph
    Bertram, Torsten
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 2419 - 2425
  • [48] An infinite horizon model predictive control for stable and integrating processes
    Rodrigues, MA
    Odloak, D
    COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (8-9) : 1113 - 1128
  • [49] How Good is Quantized Model Predictive Control With Horizon One?
    Mueller, Claus
    Quevedo, Daniel E.
    Goodwin, Graham C.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) : 2623 - 2638
  • [50] Extended horizon predictive control of Box-Jenkins model
    Han Chunyan
    Liu Xiaohua
    PROCEEDINGS OF THE 24TH CHINESE CONTROL CONFERENCE, VOLS 1 AND 2, 2005, : 823 - 826