A Deep Reinforcement Learning Method for Collision Avoidance with Dense Speed-Constrained Multi-UAV

被引:0
|
作者
Han, Jiale [1 ]
Zhu, Yi [1 ]
Yang, Jian [1 ]
机构
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 03期
基金
中国国家自然科学基金;
关键词
Collision avoidance; Autonomous aerial vehicles; Feature extraction; Safety; Recurrent neural networks; Deep reinforcement learning; Vectors; Turning; Training; Predictive models; reinforcement learning; autonomous aerial vehicles; soft actor-critic;
D O I
10.1109/LRA.2025.3527292
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter introduces a novel deep reinforcement learning (DRL) method for collision avoidance problem of fixed-wing unmanned aerial vehicles (UAVs). First, with considering the characteristics of collision avoidance problem, a collision prediction method is proposed to identify the neighboring UAVs with a significant threat. A convolutional neural network model is devised to extract the dynamic environment features. Second, a trajectory tracking macro action is incorporated into the action space of the proposed DRL-based algorithm. Guided by the reward function that considers to reward for closing to the preset flight paths, UAVs could return to the preset flight path after completing the collision avoidance. The proposed method is trained in simulation scenarios, with model updates implemented using a soft actor-critic (SAC) algorithm. Validation experiments are conducted in several complex multi-UAV flight environments. The results demonstrate the superiority of our method over other advanced methods.
引用
收藏
页码:2152 / 2159
页数:8
相关论文
共 50 条
  • [11] Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method
    Tang, Jie
    Song, Jingru
    Ou, Junhui
    Luo, Jingci
    Zhang, Xiuyin
    Wong, Kai-Kit
    IEEE ACCESS, 2020, 8 : 9124 - 9132
  • [12] Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method
    Tang, Jie
    Song, Jingru
    Ou, Junhui
    Luo, Jingci
    Zhang, Xiuyin
    Wong, Kai-Kit
    IEEE Access, 2020, 8 : 9124 - 9132
  • [13] A Collision Avoidance Method Based on Deep Reinforcement Learning
    Feng, Shumin
    Sebastian, Bijo
    Ben-Tzvi, Pinhas
    ROBOTICS, 2021, 10 (02)
  • [14] DroneARchery: Human-Drone Interaction through Augmented Reality with Haptic Feedback and Multi-UAV Collision Avoidance Driven by Deep Reinforcement Learning
    Dorzhieva, Ekaterina
    Baza, Ahmed
    Gupta, Ayush
    Fedoseev, Aleksey
    Cabrera, Miguel Altamirano
    Karmanova, Ekaterina
    Tsetserukou, Dzmitry
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR 2022), 2022, : 270 - 277
  • [15] Dynamic deployment of multi-UAV base stations with deep reinforcement learning
    Wu, Guanhan
    Jia, Weimin
    Zhao, Jianwei
    ELECTRONICS LETTERS, 2021, 57 (15) : 600 - 602
  • [16] Multi-UAV Adaptive Path Planning Using Deep Reinforcement Learning
    Westheider, Jonas
    Rueckin, Julius
    Popovic, Marija
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 649 - 656
  • [17] Deep Reinforcement Learning Multi-UAV Trajectory Control for Target Tracking
    Moon, Jiseon
    Papaioannou, Savvas
    Laoudias, Christos
    Kolios, Panayiotis
    Kim, Sunwoo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (20) : 15441 - 15455
  • [18] Deep Reinforcement Learning for Multi-UAV Exploration Under Energy Constraints
    Zhou, Yating
    Shi, Dianxi
    Yang, Huanhuan
    Hu, Haomeng
    Yang, Shaowu
    Zhang, Yongjun
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2022, PT II, 2022, 461 : 363 - 379
  • [19] Constrained Deep Reinforcement Learning for Energy Sustainable Multi-UAV Based Random Access IoT Networks With NOMA
    Khairy, Sami
    Balaprakash, Prasanna
    Cai, Lin X.
    Cheng, Yu
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (04) : 1101 - 1115
  • [20] A learning method for AUV collision avoidance through deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Wu, Di
    Cui, Yunfei
    Yan, Zheping
    Du, Xue
    OCEAN ENGINEERING, 2022, 260