Damage mechanism and evolution model of geopolymer stabilized coarse grained fillings subjected to repeated freeze-thaw actions

被引:0
|
作者
Shengnian Wang [1 ]
Yuting Xiang [1 ]
Zhijian Wu [1 ]
Honglei Hui [1 ]
Shuguang Hou [1 ]
Zhujun Sun [2 ]
机构
[1] Nanjing Tech University,College of Transportation Science & Engineering
[2] Nanjing Jiangbei New Area Public Holdings Group Co.,undefined
[3] Ltd,undefined
关键词
Cementitious coarse grained filling; Geopolymer stabilization; Freeze-thaw cycle; Damage mechanism; Damage evolution model;
D O I
10.1038/s41598-025-94908-z
中图分类号
学科分类号
摘要
The freeze-thaw damage of cementitious coarse grained fillings (CCGFs) significantly affects the firmness, stability, and durability of high-speed railway subgrades. It is favorable to employ geopolymer binders to improve the engineering performance of coarse grained fillings (CGFs), further ensure the safety of high-speed railway subgrades in cold regions due to their excellent mechanical and environmental-friendly performances. This study conducted a series of freeze-thaw and mechanical tests on geopolymer stabilized coarse grained fillings (GSCGFs). The influence of gradation, compaction degree, and freeze-thaw cycles on the integrity, strength, and stiffness of GSCGFs was investigated. The evolution law of their freeze-thaw damage was discussed quantitatively based on an improved damage factor. The results show that the mass loss rate of Group B GSCGFs with a fine-grained particle content of less than 15% was lower than that of Group A GSCGFs with a fine particle content between 15% and 30% overall. When other conditions remain unchanged, the mass loss rate of GSCGFs decreased with the increase of compaction degree but increased nonlinearly with the freeze-thaw cycles. The strength and stiffness of GSCGFs decrease nonlinearly with the freeze-thaw cycles and presented a first fast and then slow-down change trend, their stiffness evolution at different compaction degrees revealed a big difference due to the weakening bite effect and enhancing overhead structure among rock blocks. The strength reduction of Group A GSCGFs was less than that of Group B under the high compaction degree. The stiffness deterioration of Group A GSCGFs was about twice that of Group B. There seemed to be no absolute correlation that the strength of GSCGFs was positively correlated with their stiffness. By building an exponential relationship between the compressive strength of GSCGFs and the freeze-thaw cycles that followed the findings of previous several studies, an improved exponential damage evaluation model was proposed to represent the performance degradation of GSCGFs. The outcomes of this study can provide theoretical support for understanding the physical and mechanical behaviors of GSCGFs and applying them in engineering practices.
引用
收藏
相关论文
共 50 条
  • [21] Damage evolution and plasticity development of concrete materials subjected to freeze-thaw during the load process
    Sun Ming
    Xin Dabo
    Zou Chaoying
    MECHANICS OF MATERIALS, 2019, 139
  • [22] Microstructural damage evolution and its effect on fracture behavior of concrete subjected to freeze-thaw cycles
    Dong, Yijia
    Su, Chao
    Qiao, Pizhong
    Sun, L. Z.
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (08) : 1272 - 1288
  • [23] Macro-mesoscopic Correlation Investigation on Damage Evolution of Sandstone Subjected to Freeze-Thaw Cycles
    Liu, Manman
    Ding, Yanan
    Liu, Yong
    Zhang, Yongjuan
    Cheng, Yonggang
    ROCK MECHANICS AND ROCK ENGINEERING, 2025, 58 (01) : 887 - 903
  • [24] Freeze-thaw Damage Model and Deterioration Mechanism of Coal Gangue Powder Concrete
    Guan, Xiao
    Long, Hang
    Ding, Sha
    Zhang, Pengxin
    Cailiao Daobao/Materials Reports, 2024, 38 (16):
  • [25] Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and a fatigue-freeze-thaw damage evolution model
    Zhang, Fei
    Li, Xin
    Wang, Lan
    Xue, Zhihua
    Guo, Zhixiang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449
  • [26] Damage evolution mechanism of loess slope under the combination of freeze-thaw cycles and earthquake
    Yuan, Ganglie
    Wu, Zhijian
    Che, Ailan
    Zhou, Hanxu
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2023, 166
  • [27] Multiscale Study of the Damage Evolution Mechanism of Polyurethane Concrete under Freeze-Thaw Conditions
    Wu, Yuxuan
    Xu, Wenyuan
    Yu, Tianlai
    Ji, Yongcheng
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2024, 36 (11)
  • [28] A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure
    Zhang, Huimei
    Meng, Xiangzhen
    Yang, Gengshe
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2020, 174
  • [29] Damage constitutive model of concrete under repeated load after seawater freeze-thaw cycles
    Qiu, Wen-Liang
    Teng, Fei
    Pan, Sheng-Shan
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 236
  • [30] Experimental study on mesostructural damage evolution of sandstone subjected to freeze-thaw cycling under uniaxial compression
    Liu, Hui
    Han, SenLei
    Yang, GengShe
    Zhang, Yuan
    Yu, JinJie
    Feng, ZongXin
    RESEARCH IN COLD AND ARID REGIONS, 2022, 14 (05) : 317 - 328